SEPARABLE REPRESENTATIONS OF A \(W^* \)-ALGEBRA

CHARLES A. AKEMANN

1. Introduction. The decomposition of a \(W^* \)-algebra (i.e. von Neumann algebra) as a direct integral of factors has been done for the case in which the algebra acts on a separable Hilbert space. A tempting possibility for extension of these results to some nonseparable cases would be to assume merely that the dual space \(M^* \) (as a Banach space) of a \(W^* \)-algebra \(M \) is separable in the weak* topology. The purpose of this note is to show that this possibility is vacuous by showing that any \(W^* \)-algebra \(M \) with weak* separable dual space has a weakly closed faithful * representation on a separable Hilbert space. This extends the result of Rosenthal and Arveson which makes the same assertion in the case that \(M \) is abelian [3].

2. Statement and proof of the theorem. Let \(M \) be a \(W^* \)-algebra. We use the abstract approach of Sakai [4] and consider \(M \) as a \(C^* \)-algebra which is the dual of some Banach space \(F \). Then if \(M^* \) is the dual space of \(M \), there is a natural imbedding of \(F \) in \(M^* \). We shall identify \(F \) with its imbedding in \(M^* \) when convenient. It is well known that \(M \) has a weakly closed, faithful, separable representation if and only if \(F \) is norm separable.

We recall some notation from [1, p. 287]. A positive functional \(f \in M^* \) is called normal if \(f \in F \). It is called singular if there is no normal \(g \in M^* \) with \(f \geq g \). If \(f \in M^* \), we may write \(f \) as \(f = f_1 - f_2 + if^3 - if^4 \) where \(f^j \geq 0 \) \((j = 1, 2, 3, 4)\) and the \(f^j \) are uniquely determined by \(||f_1 - f_2|| = ||f_1|| + ||f_2|| \) and \(||f^3 - f^4|| = ||f^3|| + ||f^4|| \). We define \([f] = f_1 + f_2 + f^3 + f^4 \) for any \(f \in M^* \). If \(f \in M^* \), \(f \geq 0 \), we have the unique decomposition \(f = f^* + f^* \), where \(f^* \) is normal and \(f^* \) is singular and both are positive functionals.

Theorem. If \(M^* \) is weak* separable, then \(F \) is norm separable (and hence \(M \) has a weakly closed, faithful, separable representation).

Proof. Assume that \(\{f_n\}_{n=1}^\infty \) is a countable weak* dense subset of \(M^* \). Let \(f = \sum_{n=1}^\infty (2^n||f_n||)^{-1}[f_n] \), convergence being assured in the norm topology of \(M^* \). Let \(f = f^* + f^* \) be the decomposition of \(f \) into normal and singular parts. Note that \(f \) is a faithful positive functional on \(M \) since \(\{f_n\}_{n=1}^\infty \) is a weak* dense subset of \(M^* \). Thus \(M \) is countably decomposable (i.e., every family of pairwise orthogonal projections is countable), so by [6] there exists an increasing sequence \(\{p_n\} \)

Received by the editors April 11, 1969.
of projections in M with $V_{n=1}^\infty p_n = 1$ and $f^*(p_n) = 0$ for all $n = 1, 2, \ldots$. Define for each $n = 1, 2, \ldots$ the spaces $F_n = \{p_n g p_n : g \in F\}$ and $M_n = \{p_n a p_n : a \in M\}$ where $p_n g p_n \in M^*$ by $(p_n g p_n)(a) = g(p_n a p_n)$ for $a \in M$. Now $F_n \subset F$ [4] for each $n = 1, 2, \ldots$; so if F_n is separable for each $n = 1, 2, \ldots$, F is also separable. Thus assume that n is a fixed integer for which F_n is not separable.

We remark that M_n is a W^*-algebra with predual F_n and dual $p_n M^* p_n$. We shall prove that $p_n f_k p_n \in F_n$ for each $k = 1, 2, \ldots$. Since $\{p_n f_k p_n\}_{k=1}^\infty$ is obviously total over M_n, this would prove that F_n is weakly separable and hence norm separable. Now fix f_k and note that $f_k \leq \|f_k\| \cdot 2^k f$ for each $i = 1, 2, 3, 4$. Thus $p_n f_k p_n \leq \|f_k\| 2^k (p_n f_k p_n) = \|f_k\| 2^k (p_n f^* p_n)$, since $f^*(p_n) = 0$ implies $p_n f^* p_n = 0$ by the Schwartz inequality. Thus [5] $p_n f_k p_n$ is normal on M_n ($i = 1, 2, 3, 4$), so $p_n f_k p_n = p_n f_k p_n - p_n f_k p_n + i p_n f_k p_n - i p_n f_k p_n \in F_n$, for any $k = 1, 2, \ldots$. Thus F_n is separable, so F is separable. Q.E.D.

References

University of California, Santa Barbara