Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

An inequality for rational functions


Author: Harold Widom
Journal: Proc. Amer. Math. Soc. 24 (1970), 415-416
MSC: Primary 30.09
DOI: https://doi.org/10.1090/S0002-9939-1970-0252609-7
MathSciNet review: 0252609
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: An inequality of A. A. Gončar concerning the relative sizes of rational functions on different sets is reinterpreted. This allows a very simple proof of a more general inequality.


References [Enhancements On Off] (What's this?)

  • [1] A. A. Gončar, On a generalized analytic continuation, Mat. Sb. 76 (118) (1968), 135-146 = Math. USSR Sb. 5 (1968), 129-140. MR 38 #323. MR 0231997 (38:323)
  • [2] M. Tsuji, Potential theory in modern function theory, Maruzen, Tokyo, 1959. MR 22 #5712. MR 0114894 (22:5712)
  • [3] H. Widom, Rational approximation and $ n$-dimensional diameter, J. Approximation Theory (to appear). MR 0367222 (51:3464)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 30.09

Retrieve articles in all journals with MSC: 30.09


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1970-0252609-7
Keywords: Rational functions, Green's function, Capacity, Maximum principle
Article copyright: © Copyright 1970 American Mathematical Society

American Mathematical Society