A CLASS OF COUNTABLY PARACOMPACT SPACES

PHILLIP ZENOR

A space X is said to have property \mathfrak{B} if for any well-ordered monotone decreasing family $\{H_a \mid a \in A\}$ of closed sets with no common part, there is a monotone decreasing family of domains $\{D_a \mid a \in A\}$ such that

(i) $H_a \subseteq D_a$ for each a in A and
(ii) $\{\text{cl}(D_a) \mid a \in A\}$ has no common part.

It is shown that property \mathfrak{B} characterizes the separable T_3-spaces that are Lindelöf and the countably compact spaces that are compact. Also, it is shown that the T_3-space X is Lindelöf if and only if X has property \mathfrak{B} and every uncountable subset of X has a limit point.

Throughout this paper, topological spaces are assumed to be T_1-spaces.

1. Preliminary results and lemmas.

1.1. If X has property \mathfrak{B}, then X is countably paracompact.

This is immediate from [1] where it is shown that X is countably paracompact if and only if for any countable decreasing sequence of closed sets $\{H_n\}$ with no common part, there is a monotone decreasing sequence of domains $\{D_n\}$ such that

(i) for each n, $H_n \subseteq D_n$ and
(ii) $\{\text{cl}(D_n)\}$ has no common part.

1.2. If X is paracompact, then X has property \mathfrak{B}.

Proof. Let $\{a \subseteq A\}$ denote a well-ordered, monotone family of closed sets with no common part. Then $\{G_a = X - H_a \mid a \in A\}$ is an open cover of X. Hence, there is a locally finite open refinement $\{G'_a \mid a \in A\}$ of $\{G_a \mid a \in A\}$ such that $G'_a \subseteq G_a$ for each a in A. For each a in A, let $D_a = \bigcup \{G'_b \mid b \in A, b \geq a\}$. $\{D_a \mid a \in A\}$ satisfies the conditions for property \mathfrak{B}.

1.3. Theorem. If the T_2-space X has property \mathfrak{B}, then X is T_3.

Proof. Suppose the contrary; that is, suppose that there is a closed set H and a point P not in H such that if O is an open set containing H, then P is in cl(O). Let G be an open cover of H of minimal cardinal ρ such that if g is in G then cl(g) does not contain P. Note that it follows from the supposition that ρ cannot be finite.

Received by the editors October 11, 1968.

1 Part of these results were presented to the American Mathematical Society, January 25, 1969. This research was partially supported by NASA Grants NsG(T)-52 and NGR-44-005-037. Part of these results are contained in the author’s doctoral thesis at the University of Houston.
Let \(\{ g_a | a \in A \} \) be a well-ordering of \(G \) according to the initial ordinal of cardinal \(\rho \). Then \(\{ h_a = H - \bigcup_{b < a} g_b | a \in A \} \) is a well-ordered monotone decreasing family of closed sets with no common part. Since \(S \) has property \(\mathfrak{B} \), there is a domain \(D \) containing \(h_{a'} \), for some \(a' \) in \(A \), such that \(P \) does not belong to \(\text{cl}(D) \). Hence, \(G' = \{ g_b | b \leq a' \} \cup D \) is an open cover of \(H \) such that if \(g \in G' \), then \(P \) is not in \(\text{cl}(g) \). But the cardinality of \(G' \) is less than \(\rho \) which is a contradiction from which the theorem follows.

The following example, brought to the attention of the author by John Mack, shows that property \(\mathfrak{B} \) cannot be replaced by countable paracompactness in Theorem 1.3.

Let \([0, \Omega)\) denote the segment of countable ordinals, where \(\Omega \) denotes the first uncountable ordinal and let \([0, \Omega] = [0, \Omega) \cup \{ \Omega \}\). Let \(Y = [0, \Omega] \times [0, \Omega] - (\Omega, \Omega) \). Then \(Y/(\Omega \times [0, \Omega]) \) is a countably compact (and therefore countably paracompact) \(T_3 \)-space that is not \(T_3 \).

Related to Theorem 1.3 are the following questions:

1. If \(X \) is a \(T_3 \)-space with property \(\mathfrak{B} \) such that each closed set is a \(G_\delta \)-set, then is \(X \) normal?
2. If \(X \) is a \(T_3 \)-space with property \(\mathfrak{B} \) such that each closed subset of \(X \) is a \(G_\delta \)-set, then is \(X \) hereditarily countably paracompact?

With techniques similar to those used in [2], Questions 1 and 2 can be shown to be equivalent.

Recall that the function \(f \) from \(X \) to \(Y \) is said to be a proper mapping if \(f \) is continuous, closed, and \(f^{-1}(y) \) is compact for each \(y \) in \(Y \).

1.4. Theorem. If \(X \) has property \(\mathfrak{B} \) and \(f \) is a proper mapping from \(X \) onto \(Y \), then \(Y \) has property \(\mathfrak{B} \).

Proof. Let \(\{ H_a | a \in A \} \) be a well-ordered, monotone decreasing family of closed sets in \(Y \) with no common part. Then \(\{ f^{-1}(H_a) | a \in A \} \) is a well-ordered monotone decreasing family of closed sets in \(Y \) with no common part. Let \(\{ D_a | a \in A \} \) denote the family of domains in \(X \) given by property \(\mathfrak{B} \) for \(\{ f^{-1}(H_a) | a \in A \} \). Let \(O_a = Y - f(X - D_a) \) for each \(a \) in \(A \). Then \(\{ O_a | a \in A \} \) is a well-ordered family of domains in \(Y \) such that \(H_a \subseteq O_a \) for each \(a \) in \(A \). Suppose that \(y \in \bigcap_{a \in A} \text{cl}(O_a) \). Then \(f^{-1}(y) \) is a compact set that intersects \(\text{cl}(D_a) \) for each \(a \) in \(A \) which is impossible; and so, \(\{ \text{cl}(O_a) | a \in A \} \) has no common part.

1.5. Corollary. If \(X \) has property \(\mathfrak{B} \) and \(Y \) is compact, then \(X \times Y \) has property \(\mathfrak{B} \).

1.6. Lemma. If \(X \) has property \(\mathfrak{B} \) and \(\{ K_a | a \in A \} \) is a well-ordered, countably centered, monotone decreasing family of closed sets in \(X \) with no common part, then there is an uncountable pair-wise disjoint family of nonempty domains and an uncountable, closed discrete subset of \(X \).
PROOF. For each a in A, let
\[
F_a = \bigcap_{b < a} K_b \quad \text{if } a \text{ is a limit ordinal,}
\]
\[
= K_a \quad \text{otherwise.}
\]
Then \(\{ F_a \mid a \in A \} \) is a well-ordered, countably centered, monotone decreasing family of closed sets with no common part. Let \(\{ D_a \mid a \in A \} \) be the collection of domains given by property \(\mathfrak{D} \) for \(\{ F_a \mid a \in A \} \). For each a in A, the set \(\{ b \in A \mid D_a - \text{cl}(D_b) \neq \emptyset \} \) is not empty. Let τ be the function from A into A that takes a into the first element of \(\{ b \in A \mid D_a - \text{cl}(D_b) \neq \emptyset \} \). Observe that for each a in A, $\tau(a) > a$.

Let θ denote the function taking A into the power set of X by letting $\theta(0) = D_0 - \text{cl}(D_{\tau(0)})$ and
\[
\theta(b) = D_b - \text{cl}(D_{\tau(b)}) \quad \text{if } \sup \{ \tau(a) \mid a < b \} \leq b,
\]
\[
= \emptyset \quad \text{otherwise.}
\]
Clearly $\theta(A)$ is a pair-wise disjoint collection of domains. If it can be shown that $A' = \{ a \in A \mid \theta(a) \neq \emptyset \}$ is cofinal in A, it will follow that $\theta(A)$ is uncountable; otherwise, \(\{ F_a \mid a \in A' \} \) would be a countable subcollection of \(\{ F_a \mid a \in A \} \) with no common part. To see that A' is cofinal in A, suppose the contrary; that is, suppose that $b = \sup A'$ is in A. Let $b_1 = \tau(b)$ and, proceeding by induction, let $b_{n+1} = \tau(b_n)$. The set \(\{ b_n \mid n = 1, 2, \cdots \} \) is not cofinal in A, since \(\{ F_b \} \) is countably centered, so $b_0 = \sup \{ b_n \} \in A$. Since τ is monotone nondecreasing, it follows that $\sup \{ \tau(a) \mid a < b_0 \} \leq b_0$; and so b_0 is in A'.

For each a in A', let P_a be a point of $\theta(a)$. To see that \(\{ P_a \mid a \in A' \} \) has no limit point, suppose the contrary; that is, suppose that P is a limit point of \(\{ P_a \mid a \in A' \} \). Since if a is a limit ordinal of A, $F_a = \bigcap_{b < a} F_b$, there is a last element a' of A such that $F_{a'}$ contains P. Let $\mathcal{P}_1 = \{ P_a \mid a \in A', a \leq a' \}$ and $\mathcal{P}_2 = \{ P_a \mid a \in A', a > a' \}$.

Since P does not belong to $F_{a' + 1}$, P is not a limit point of \mathcal{P}_2; and so, P must be a limit point of \mathcal{P}_1. If \(\{ a \in A' \mid a \leq a' \} \) has no last term, $D_{a'}$ is a domain containing P but no points of \mathcal{P}_1; hence, \(\{ a \in A' \mid a \leq a' \} \) must have a last term, say b'. Then $D_{b'}$ is a domain containing P that contains only one point of \mathcal{P}_1, namely $P_{b'}$, which is a contradiction from which it follows that \(\{ P_a \mid a \in A' \} \) has no limit point.

1.7. Lemma. Suppose that X is a space with an uncountable, closed, discrete subspace H. If X has property \(\mathfrak{D} \), then there are uncountably many mutually exclusive nonempty domains in X.

PROOF. Let K denote a subcollection of H with cardinality \aleph_1. Let \(\{ P_a \mid a \in A \} \) be a well-ordering of K according to the least ordinal
of cardinal \mathfrak{N}_1. For each a in A, let $K_a = \{ P_b | b \in A, b \preceq a \}$. Then
\{ K_a | a \in A \} is a well-ordered, monotone decreasing family of closed sets with no common part. Since the cardinality of K is \mathfrak{N}_1,
\{ K_a | a \in A \} is countably centered; therefore, by Lemma 1.6, there is an uncountable family of mutually exclusive, nonempty domains in X.

A space X is said to have the *Souslin property* if there is no uncountable collection of mutually exclusive nonempty domains in X.

1.8. **Corollary.** If the space S has the Souslin property and property \mathfrak{B}, then every uncountable subset of X has a limit point.

1.9. **Corollary.** If X is a separable space with property \mathfrak{B}, then every uncountable subset of X has a limit point.

The following result, due to W. B. Sconyers [3, Theorem 3], is stated as a lemma.

1.10. **Lemma.** The T_3-space X is Lindelöf if and only if for each well-ordered, monotone increasing family \mathcal{D} of domains covering the space, there is a countable collection of closed sets that refines \mathcal{D} and covers X.

2. **Main results.**

2.1. **Theorem.** The T_3-space X is Lindelöf if and only if

(i) X has property \mathfrak{B} and

(ii) every uncountable subset of X has a limit point.

Proof. It is well known that if X is Lindelöf, then X is paracompact; and so, by 1.2, X has property \mathfrak{B}.

Suppose that (i) and (ii) are satisfied. By Lemma 1.10, it is sufficient to show that there is a countable collection, $\{ F_n \}$, of closed sets refining $\{ D_a | a \in A \}$ and covering X, where $\{ D_a | a \in A \}$ is a well-ordered, monotone increasing open cover of X. It follows easily from Lemma 1.6 that there is a countable subset B of A such that $\{ D_b | b \in B \}$ covers X. Hence, $\{ E_b = X - D_b | b \in B \}$ is a countable, well-ordered family of closed sets with no common part. Let $\{ G_b | b \in B \}$ be the domains given for $\{ E_b | b \in B \}$ by property \mathfrak{B}. Then $\{ F_b = X - G_b | b \in B \}$ is the desired collection of closed sets.

2.2. **Corollary.** The countably compact T_3-space X is compact if and only if X has property \mathfrak{B}.

The following theorems follow immediately from Theorem 2.1, Lemma 1.7 and Corollary 1.8:

2.3. **Theorem.** If the T_3-space X has the Souslin Property, then X is Lindelöf if and only if X has property \mathfrak{B}.
2.4. Theorem. The separable T_γ-space X is Lindelöf if and only if X has property 08.

References

University of Houston and
Auburn University