COMMUTATIVITY AND COMMON FIXED POINTS IN RECURRENCE THEORY

JAMES C. OWINGS, JR.¹

Let \(N \) be the set of nonnegative integers and, for \(e \in N \), let \(\phi_e \) be the partial recursive function of one argument having index \(e \). In 1938 [1, The Recursion Theorem] Kleene showed that if \(f \) is any recursive function then, for some number \(c \), \(\phi_c \cong \phi_f(c) \). It follows that if \(W_e \) (the recursively enumerable (r.e.) set with index \(e \)) is defined as the domain of \(\phi_e \), then \(W_e = W_f(c) \). Call a number-theoretic function \(h \) well-defined on the r.e. sets if, for all \(m, n \in N \), \(W_m = W_n = W_{h(m)} = W_{h(n)} \). In this paper we show that if \(f, g \) are recursive functions which are well-defined on the r.e. sets and which commute as maps of the r.e. sets (i.e., for all \(n \in N \), \(W_{f(g(n))} = W_{g(f(n))} \)), then they have a common fixed point (i.e., for some \(e \in N \), \(W_e = W_{f(e)} = W_{g(e)} \)). We also give an example which shows that the assumption of well-definedness cannot be eliminated.

First we prove a lemma related to the Myhill-Shepherdson Theorem [2, p. 359, Theorem XXIX (6)]. From now on, whenever \(f \) is well defined on the r.e. sets and \(W \) is an r.e. set, we shall write \(f(W) \) for \(W(f) \) where \(e \) is any number such that \(W = W_e \).

Lemma. If \(f \) is a partial recursive function well-defined on the r.e. sets and \(W \) is an r.e. set, then

\[
\{f(W)\} = \bigcup \{f(F) \mid F \subseteq W \text{ and } F \text{ is finite}\}.
\]

Proof. Our proof consists of two applications of Kleene's Recursion Theorem.

\(f(W) \subseteq \bigcup \{f(F) \mid F \subseteq W\} : \) Suppose \(n \in f(W) \). Let \(h \) be a recursive function such that, for all \(x \),

\[
W_{h(x)} = W \quad \text{if} \quad n \notin f(W_x),
\]

\[
= \text{some finite subset} \quad F \quad \text{of} \quad W \quad \text{if} \quad n \in f(W_x),
\]

and choose \(c \) satisfying \(W_c = W_{h(x)} \). Clearly, \(W_c \subseteq W \). Suppose \(n \in f(W_c) \). Then \(W_c = W \), a contradiction, since \(n \notin f(W) \). So \(n \notin f(W_c) \). But then \(W_c \) is finite, so \(n \in \bigcup \{f(F) \mid F \subseteq W\} \).

\(\bigcup \{f(F) \mid F \subseteq W\} \subseteq f(W) : \) Suppose \(F \subseteq W \) and \(n \in f(F) \). Let \(h \) be a recursive function such that, for all \(x \),

Received by the editors March 21, 1969.

¹ Partially supported by NSF Grant GP-6897.
\[W_{h(z)} = F \quad \text{if } n \in f(W_z), \]
\[= W \quad \text{if } n \not\in f(W_z), \]

and choose \(c \) satisfying \(W_c = W_{h(c)} \). Suppose \(n \in f(W_c) \). Then \(W_c = F \), a contradiction, since \(n \in f(F) \). So \(n \not\in f(W_c) \). But then \(W_c = W \), so \(n \in f(W) \).

Theorem. Let \(f, g \) be recursive functions such that

\[W_m = W_n \rightarrow (W_{f(m)} = W_{f(n)} \& W_{g(m)} = W_{g(n)} \& W_{f(g(m))} = W_{f(g(n))}). \]

Let \(V = \bigcup_{k \geq 0} (f \circ g)^k(\emptyset) \). Then \(V \) is r.e., \(V = f(V) = g(V) \) and, for all \(V' \), if \(V' = f(V') = g(V') \), then \(V' \supseteq V \).

Proof. Let \(V_0 = \emptyset \), \(V_{n+1} = f(g(V_n)) \). Since \(W_0 = \emptyset \), if we define \(k(0) = 0 \); \(k(n+1) = f(g(k(n))) \), then \(V_n = W_{k(n)} \) for all \(n \geq 0 \). So

\[V = \bigcup_{n>0} V_n = \bigcup_{n>0} W_{k(n)} \]

is an r.e. set.

If \(h \) is well defined on the r.e. sets and \(W, W' \) are r.e. sets with \(W \subseteq W' \), then, by the lemma,

\[h(W) = \bigcup h(F)(F \subseteq W) \subseteq \bigcup h(F)(F \subseteq W') = h(W'). \]

We have \(\emptyset \subseteq f(\emptyset) \), \(\emptyset \subseteq g(\emptyset) \). So

\[g(\emptyset) \subseteq g(f(\emptyset)) = f(g(\emptyset)), \quad f(\emptyset) \subseteq f(g(\emptyset)). \]

Hence \(V_0 \subseteq f(V_0) \subseteq V_1 \), \(V_0 \subseteq g(V_0) \subseteq V_1 \). Inductively, assume \(V_n \subseteq g(V_n) \subseteq V_{n+1} \), \(V_n \subseteq f(V_n) \subseteq V_{n+1} \). Then

\[V_{n+1} = f(g(V_n)) \subseteq f(V_{n+1}), \]
\[V_{n+1} = g(f(V_n)) \subseteq g(V_{n+1}), \]

so that

\[g(V_{n+1}) \subseteq g(f(V_{n+1})) = f(g(V_{n+1})) = V_{n+2} \]

and

\[f(V_{n+1}) \subseteq f(g(V_{n+1})) = V_{n+2}. \]

Thus

\[V_{n+1} \subseteq f(V_{n+1}) \subseteq V_{n+2}, \quad V_{n+1} \subseteq g(V_{n+1}) \subseteq V_{n+2}. \]

So, for all \(n \geq 0 \), \(V_n \subseteq f(V_n) \subseteq V_{n+1} \), \(V_n \subseteq g(V_n) \subseteq V_{n+1} \).

This gives

\[V = \bigcup_{n>0} V_n = \bigcup_{n>0} f(V_n) = \bigcup_{n>0} g(V_n). \]
So
\[f(V) = \bigcup_{n>0} f(F) (F \subseteq V) = \bigcup_{n>0} \left(\bigcup_{n>0} f(F) (F \subseteq V_n) \right) = \bigcup_{n>0} f(V_n) = V, \]
and
\[g(V) = \bigcup_{n>0} g(F) (F \subseteq V) = \bigcup_{n>0} \left(\bigcup_{n>0} g(F) (F \subseteq V_n) \right) = \bigcup_{n>0} g(V_n) = V. \]

Also, \(V \) is the least common fixed point. For let \(V' \) be any other common fixed point. Trivially \(V_0 = \emptyset \subseteq V' \); suppose \(V_n \subseteq V' \). Then \(g(V_n) \subseteq g(V') = V' \), so that
\[V_{n+1} = f(g(V_n)) \subseteq f(V') = V'. \]

Hence \(V = \bigcup_{n>0} V_n \subseteq V' \).

The reader will detect a close connection between the above proof and Kleene’s proof of his “first” recursion theorem [1, p. 66].

There is a version of Theorem 2 for partial recursive functions, rather than r.e. sets. One can replace \(W \) by \(\phi, = \) by \(\sim \), \(\bigcup \) by “least common extension of” and \(\exists \) by “extends.”

We note the assumption of well-definedness in Theorem 2 is necessary. For let \(e_n \) be the Gödel number of the finite system of equations \(h(n) = n \) where \(h \) is a function letter and \(n \) is the numeral for \(n \). Then, for all \(n \), \(W_{e_n} = \{ n \} \). Define
\[f(x) = \mu y (y \geq x \& (\exists n) (y = e_n)), \]
\[g(x) = \mu y (y \geq x \& (\exists n) (x \leq e_n \& y = e_{n+1})). \]

Then \(f(g(x)) = g(f(x)) = g(x) \), so \(f \) and \(g \) commute as number-theoretic functions. \(f \) and \(g \) are recursive, but for all \(x \), \(W_{f(x)} \neq W_{g(x)} \). Thus \(f \) and \(g \) cannot possibly have a common fixed point.

References

University of Maryland