ON THE EXTENSION OF LINEARLY INDEPENDENT SUBSETS OF FREE MODULES TO BASES

BYOUNG-SONG CHWE AND JOSEPH NEGGERS

Introduction. In this note we discuss a class of rings with identity with the following property:

(1) Each linearly independent subset of a (unitary) free right \(A \)-module can be extended to a basis, by adjoining elements of a given basis. In view of (1) we call such rings right-Steinitz rings. We prove the equivalence of (1) and the following condition:

(2) Let \(R_1 = \{ \text{x \in A} | \text{x does not have a left inverse} \} \). If an infinite matrix \(T \) of elements of \(R_1 \) is column-finite and if \(T_{ij} = 0 \) for all \(i \leq j \), then, for each \(j \), there is an integer \(N \) such that \((T + T^2 + \cdots + T^n)_{j+N,j} = 0 \) for all \(n > N \).

To prove the equivalence of (1) and (2) we need to establish several other properties of right-Steinitz rings, which in turn reveal them as being either examples or “near-examples” of classes of rings studied by a variety of investigators, the following cases being representative.

In [1], P. M. Cohn discusses a sequence of three progressively stronger conditions, the strongest being

III. Any generating set with \(n \) elements of a rank \(n \) free module is free. An inductive argument shows that right-Steinitz rings do indeed satisfy the condition. It also follows from the discussion below that right-Steinitz rings satisfy all conditions of Goldie’s local-rings except that the intersection of all powers of the ideal of nonunits may not be zero (cf., e.g., [2]). Obviously, division rings are right-Steinitz rings. If \(Z \) is the ring of integers and if \(p \) is any prime, then \(Z/(p^i) \) satisfies condition (2) as is easily seen. For any field \(\Delta \) and a vector-space \(V \) over \(\Delta \), let \(A = \Delta \times V \), with operations defined by

\[
\begin{align*}
(\delta_1, x_1) + (\delta_2, x_2) &= (\delta_1 + \delta_2, x_1 + x_2) \\
(\delta_1, x_1)(\delta_2, x_2) &= (\delta_1\delta_2, x_1\delta_2 + x_2\delta_1), \quad \delta_i \in \Delta, \quad x_i \in V.
\end{align*}
\]

Then, \(V \) is the ideal of nonunits, with \(V^2 = 0 \), and again condition (2) is easily seen to be satisfied. Another property of right-Steinitz rings is the following: if \(\{ x_i \}_{i=0}^{n} \) is a sequence of nonunits, then, for some index \(n \), \(x_n \cdot x_{n-1} \cdots x_1 = 0 \). Thus, let \(F_0 \) be a division-ring, and let \(F_0[x] \) be the polynomial-ring in one variable over \(F_0 \). Define \(F_i = xF_0[x] / x^{i+1}F_0[x] \) for \(i \geq 1 \). Let \(R \) be the weak direct sum of rings

Presented to the Society, January 23, 1969; received by the editors September 25, 1968.

466

License or copyright restrictions may apply to redistribution; see http://www.ams.org/journal-terms-of-use
Then, \(R \) is a two-sided vector-space over \(F_0 \). Take \(A = F_0 \times R \), with operations
\[
(\delta_1, x_1) + (\delta_2, x_2) = (\delta_1 + \delta_2, x_1 + x_2),
\]
\[
(\delta_1, x_1) \cdot (\delta_2, x_2) = (\delta_1 \delta_2, x_1 \delta_2 + \delta_1 x_2 + x_1 x_2), \quad \delta_i \in F_0, \quad x_i \in R.
\]
Notice that if \(x_0 = (\alpha, \cdots, \alpha_{i+1}, 0, \cdots, 0, \cdots) \in R \), then given any sequence \(\{x_i\}_{i=0}^{\infty} \) of elements in \(R \), \(x_i x_{i-1} \cdots x_0 = 0 \). From this, again, condition (2) follows. Notice that in this case the ideal \(R \) is not nilpotent, while if \(R \) is nilpotent, (2) follows easily.

Clearly, if \(T \) is an infinite proper triangular matrix, i.e., a triangular matrix with 0 diagonal, over any ring, then the inverse of \(I - T \) exists and is equal to \(I + T + T^2 + \cdots \). The argument depends on the fact that \(I - T \) as well as \(I + T + T^2 + \cdots \) are row finite and because \((T^n)_{ij} = 0 \) if \(n > i - j \). We can thus restate condition (2) to obtain the equivalent form:

(2)' If \(T \) is an infinite column-finite proper triangular matrix of elements of \(R_1 \), so is \((I - T)^{-1}\). In concluding this introduction we should like to thank the referee for several helpful comments and a simplification of the proof of Theorem 2.

The equivalence of conditions (1) and (2). Note that all modules under discussion are right unitary.

Lemma 1. If \(A \) satisfies (1), then for each infinite sequence \(\{x_i\}_{i=0}^{\infty} \) of elements of \(A \) which do not have a left inverse, there is a nonnegative integer in such that \(x_n x_{n-1} \cdots x_0 = 0 \).

Proof. Let \(\{u_i\}_{i=0}^{\infty} = U \), be a basis for a free \(A \)-module \(M \), i.e \(M = [U] = [U_i]_{i=0}^{\infty}. \) Let \(v_i = u_i - u_{i+1} x_i, \quad i = 0, 1, 2, \cdots \). Then, \(\{v_i\}_{i=0}^{\infty} \) is linearly independent. Indeed, \(\sum_{i=0}^{\infty} a_i v_i = 0 \) implies \(\sum_{i=0}^{\infty} (u_i - u_{i+1} x_i) a_i = 0 \), i.e.,
\[
u_0 a_0 + u_1 (a_1 - x_0 a_0) + \cdots + u_s (a_s - x_{s-1} a_{s-1}) - u_{s+1} x_s a_s = 0,
\]
whence \(a_0 = a_1 = \cdots = a_s = 0 \). Now let \(V \) be the submodule spanned by \(\{v_i\}_{i=0}^{\infty} \). Since \(\{v_i\}_{i=0}^{\infty} \) can be extended to a basis of \(M \) by adjoining elements of \(U \), suppose \(\{v_i\}_{i=0}^{\infty} \cup \{u_i, u_{i+1}, \cdots \} \) is a basis of \(M \).

Then \(u_i \equiv u_i y \) (mod \(V \)) for some \(y \in A \) if \(i_1 < i_2 \), whence \(u_i \in \operatorname{span}(v, \{u_i\}) \). Thus \(\{v_i\}_{i=1}^{\infty} \cup \{u_i\} \) must be a basis for some \(u_i \in U \). Then, \(u_{i+1} \equiv u_{i+1} x_t \) (mod \(V \)), \(u_i \equiv u_{i+1} x_t \) (mod \(V \)). Hence, \(u_i \equiv u_{i+1} x_t \) (mod \(V \)), i.e., \(1 - a x_t = 0 \). Since \(x_t \) does not have a left inverse, \(V = M \), and \(\{v_i\}_{i=0}^{\infty} \) is a basis of \(M \). Thus, if \(\sum_{i=0}^{\infty} v_i b_i = u_0 \), i.e.,
\[
u_0 b_0 + u_1 (b_1 - x_0 b_0) + \cdots + u_s (b_s - x_{s-1} b_{s-1}) - u_{s+1} x_s b_s = u_0,
\]
we have \(b_0 = 1, b_1 = x_0, \ldots, b_s = x_{s-1} \cdots x_0, x_s b_s = x_s \cdots x_0 = 0. \) Hence, \(n = n(s) = s \) and the lemma follows.

Lemma 2. Let \(A \) be a ring with identity, \(R_1 = \{ x \in A \mid x \text{ does not have a left inverse} \} \) and \(R_2 = \{ x \in A \mid x \text{ does not have a right inverse} \} \). If every element of \(R_1 \) is nilpotent then \(R_1 = R_2 \) and \(R_1 \) forms the unique maximal ideal of \(A \).

Proof. First we show that \(R_1^c = A \setminus R_1 \) forms a group. It is clear that \(R_1^c \) is closed under multiplication. Suppose \(x \in R_1^c \), then there is a \(y \in A \) such that \(y \cdot x = 1 \). If \(y \in R_1^c \) then there is an integer \(n \) such that \(y^n = 0, y^{n-1} \neq 0 \). Hence, \(0 = y^n \cdot x = y^{n-1} \), and this is a contradiction. So, \(y \in R_1^c \). Therefore, if \(yx = 1 \) then \(xy = 1 \). Thus, \(R_1^c \subseteq R_2^c \). Hence \(R_1 \supseteq R_2 \). Suppose \(x \in R_1 \) and \(x \in R_2 \), then there is a \(y \in A \) such that \(xy = 1 \). Since \(x \) is nilpotent, this is also a contradiction. Hence \(R_1 = R_2 \). To show \(R_1 \) is closed under +, let \(x \) and \(y \) be elements of \(R_1 \), and suppose \(x + y \notin R_1 \). Then there is a \(z \in A \) such that \(z(x + y) = 1 \), \(zx + zy = 1 \), \(zx = 1 - zy \). Since \(zy \in R_1 \), it is nilpotent and \(1 - zy \) has an inverse, i.e., \(zx \) has an inverse. This is a contradiction. Hence \(R_1 \) is closed under +. It is clear that \(zR_1 \subseteq R_1 \) for any \(z \in A \). Also if \(x \in R_1, z \in A \) and \(zx \in R_1 \), then there is a \(y \in A \) such that \(yxz = 1 \). This is a contradiction because \(yx \) is nilpotent. Hence \(R_1 \) is an ideal of \(A \). It is clear that \(R_1 \) is the unique maximal ideal of \(A \) because \(R_1^c \) consists of the units of \(A \). In short, since \(R_1 \) forms a left ideal, Lemma 2 follows as is well known.

Corollary 3. If, for each infinite sequence \(\{x_i\}_{i=0}^\infty \) of elements of \(A \) which do not have a left inverse there is a nonnegative integer \(n \) such that \(x_n \cdot x_{n-1} \cdots x_0 = 0 \), then there is a nonzero element \(a \) of \(A \) such that \(b \cdot a = 0 \) for all elements \(b \) of \(A \) which do not have a right inverse.

Proof. Let \(R_2 \) be the collection of all nonzero elements of \(A \) which do not have a right inverse. If, for all nonzero elements \(x \) of \(R_2 \), \(R_3 x \neq \{ 0 \} \), we have a choice function \(f: R_2 \backslash 0 \rightarrow R_2 \backslash 0 \), such that \((x)f \cdot x \neq 0 \), whence each nonzero \(x_1 \) in \(R_2 \) generates an infinite sequence \(\{x_1, \ldots, x_n, \ldots\} \) with \(x_1 = (x_{i-1} \cdots x_1)f \), such that \(x_n \cdot x_{n-1} \cdots x_1 \neq 0 \) for each integer \(n \). This is a contradiction. Hence, since \(R_2 = \{ 0 \} \) implies \(R_2 \cdot 1 = 0 \), the lemma follows.

Theorem 1. If a ring \(A \) satisfies (1), then it satisfies (2).

Proof. From Lemma 1 and Lemma 2, \(A \) has a unique maximal ideal consisting of all nonunits, \(R_1 = R_2 = R \). Let \(T \) be a matrix provided by (2), and let
let $u = \{u_j \mid j = 1, 2, \cdots \}$ be a basis of a free A-module M. Let

$$v_j = u_j - \sum_i u_i T_{ij} \quad \text{for } j = 1, 2, 3, \cdots,$$

then clearly $V = \{v_j \mid j = 1, 2, 3, \cdots \}$ is a linearly independent subset of M. From the corollary to Lemma 2, there is a nonzero element a such that $Ra = 0$. Hence $v_i a = U_j a$ for each j. Since we suppose that A satisfies (1) and V is a basis of M. Suppose $\sum_{j=1}^n v_j S_{ji} = u_i$ and $S_{ji} \subseteq A$ for each i. Let s be the matrix whose elements are S_{ji}, then $(I-T)s = 1$ where $I_{ij} = \delta_{ij}$, where as mentioned before, $S = I + T + T^2 + \cdots$.

Lemma 3. Let A be a ring satisfying condition (2), then for each sequence $\{x_i\}_{i=1}^n$ of elements of R_1, there is an n such that

$$x_n \cdot x_{n-1} \cdots x_1 = 0.$$

Proof. Consider the case $T_{ij} = x_j$ if $i = j+1$ and $T_{ij} = 0$ if $i \neq j+1$. Then

$$(T^n)_{n,1} = T_{n+1,n} \cdot T_{n,n-1} \cdots T_{2,1} = x_n \cdot x_{n-1} \cdots x_1.$$ Hence from condition (2), $x_n \cdot x_{n-1} \cdots x_1 = 0$.

Lemma 4. If A satisfies condition (2) then $R_1 = R_2 = R$ and if $R \neq \{0\}$ there is a nonzero element $a \in R$ such that $Ra = 0$, and R is the unique maximal ideal from Lemmas 3, 2 and the corollary to Lemma 2.

Lemma 5. Let A be a ring as in the corollary to Lemma 2, then any finite linearly independent subset of a free A-module M can be extended to a basis by adjoining elements of a given basis.

Proof. Let $V = \{v_1, v_2, \cdots, v_n\}$ be a linearly independent set, and $U = \{u_i \mid i \in \Lambda\}$ be a basis of M. Let $v_1 = \sum u_i a_i$ for $a_i \in A$, then not all a_i are elements of R, otherwise $v_1 a = \sum u_i a_i a = 0$, where a is the element of A of Corollary 3. Let $a_1 \in R$, then $v_1 = (v_1 - \sum_{i>1} u_i a_i) a_1^{-1}$, hence $\{v_1\} \cup \{u_i \mid i \neq 1\}$ is a basis. Suppose $\{v_1, v_2, \cdots, v_{n-1}\} \cup \{u_i \mid i > n\}$ is a basis and $v_n = \sum_{i<n} v_i b_i + \sum_{i>n} u_i a_i$, then not all a_i are in R, otherwise $v_n a = \sum_{i<n} v_i b_i a$. Hence v_1, v_2, \cdots, v_n can be extended to a basis by adjoining some elements of U. Therefore, by induction, the lemma is proved.

Theorem 2. If a ring A satisfies (2) then it satisfies (1).

Proof. Let $U = \{u_i \mid i \in \Lambda\}$ be a basis of M, and $V = \{v_j \mid j \in T\}$ be a linearly independent subset. Without loss of generality we may
assume that V is a maximal linearly independent subset of $V \cup U$. Suppose $[V] \neq M$, then there is a $u_1 \in [V]$. Let $u_1 c = \sum_{j=1}^{n} V_j b_j$, for some $c \in A$ and $b_j \in A$. Since $\{v_1, v_2, \ldots, v_n\}$ can be extended to a basis by adjoining some elements of U,

$$u_1 = \sum_{j} v_j b_j + \sum_{i} u_i T_{ii} \quad \text{for some } b_j, \quad T_{ii} \in A,$$

whence $b_j c = b_j$ and $T_{ii} c = 0$ for all j and l. Hence $T_{ii} \in R$ and $u_1 = \sum_{l=1}^{2} u_i T_{ii} \mod [V]$. If $T_{ii} \neq 0$, then $u_1 \neq \sum_{l=2}^{2} u_i T_{ii} (1 - T_{ii})^{-1} \mod [V]$, and we may thus assume $u_1 = \sum_{l=2}^{2} u_i T_{ii} \mod [V]$. Repeating this argument, we obtain a countably infinite column-finite matrix T of elements of R such that $T_{ii} = 0$ if $l \leq i$ and $u_i = \sum_{l=2}^{2} u_i T_{ii} \mod [V]$. By $(2)'$, $S = (I - T)^{-1}$ is column-finite. If X denotes the row matrix (u_1, u_2, \ldots), then $X(I - T) \equiv 0 \mod [V]$ implies $(X(I - T)) S \equiv 0 \mod [V]$, contradicting the fact that $u_1 \in [V]$.

Corollary. If a ring A satisfies (2), then, for any A-module M, $M = MR$ implies $M = \{0\}$.

Proof. Let $\{u_i | i \in T\}$ be a generating set, then for each u_i, $u_i = \sum_{i} u_i T_{ii}$ where $T_{ii} \in R_i$. We can assume that $T = \{1, 2, \ldots\}$ and $T_{ii} = 0$ if $l \geq i$ as before. Then, $u_i - \sum_{i} u_i T_{ii} = 0$ implies $u_i = 0$ for each i.

References

The University of Alabama