APPLICATIONS OF AN INEQUALITY FOR THE SCHUR COMPLEMENT

EMILIE V. HAYNSWORTH

1. Introduction. Suppose B is a nonsingular principal submatrix of an $n \times n$ matrix A. The Schur Complement of B in A, denoted by (A/B), is defined as follows: Let \tilde{A} be the matrix obtained from A by the simultaneous permutation of rows and columns which puts B into the upper left corner of \tilde{A},

$$A = \begin{pmatrix} B & C \\ D & G \end{pmatrix},$$

leaving the rows and columns of B and G in the same increasing order as in A. Then the Schur Complement of B in A is

$$(A/B) = G - DB^{-1}C.$$

Schur proved that the determinant of A is the product of the determinant of any nonsingular principal submatrix B with that of its Schur complement,

$$(A/B) = \det(B) \det(A/B).$$

The inertia of an Hermitian matrix A is given by the ordered triplet, $\text{In} A = (\pi, \nu, \delta)$, where π denotes the number of positive, ν the number of negative, and δ the number of zero roots of the matrix A. In a previous paper [2], it was shown that the inertia of an Hermitian matrix can be determined from that of any nonsingular principal submatrix together with that of its Schur complement. That is, if A is Hermitian, and B is a nonsingular principal submatrix of A, then

$$\text{In} A = \text{In} B + \text{In}(A/B).$$

More recently, the author, with Douglas Crabtree [1], proved the identity,

$$(A/B) = ((A/C)/(B/C)).$$

In Theorem 1 of §2 we make use of (3) to prove an extension of a theorem by Marcus [3]. Then in Theorem 2 we apply the result of Theorem 1 to obtain an inequality for the Schur complement which is similar to Minkowski's famous inequality (see [4]) for the determinant of the sum of positive definite Hermitian matrices:

Received by the editors May 16, 1969.
AN INEQUALITY FOR THE SCHUR COMPLEMENT

\[|A + B|^{1/n} \geq |A|^{1/n} + |B|^{1/n} \] (Minkowski).

This, of course, implies

(4) \[|A + B| \geq |A| + |B|. \]

A number of extensions of the Minkowski inequality have been proved by Marcus, Minc and others (see [5]).

In Theorem 3 we obtain some new inequalities for the determinant of the sum of two positive definite Hermitian matrices.

2. An extension of a theorem by Marcus. In a recent paper [3] M. Marcus proved a number of interesting inequalities for positive definite Hermitian matrices, including the following: If \(H \) and \(K \) are positive definite matrices of order \(n \), and \(X \) and \(Y \) are arbitrary vectors, then

\[(H^{-1}X, X) + (K^{-1}Y, Y) \geq ((H + K)^{-1}(X + Y), (X + Y)).\]

It is shown in Theorem 1 that by making use of the properties of the Schur complement this inequality can be extended to the case where \(X \) and \(Y \) are arbitrary \(n \times m \) matrices. We shall use the notation \(A \geq 0 \) for a positive semidefinite matrix (p.s.d. matrix), with strict inequality implying that \(A \) is positive definite (p.d.). If \(A \) and \(B \) are p.s.d. matrices, the statement \(A \geq B \) will mean \(A - B \geq 0 \).

Theorem 1. Suppose \(H \) and \(K \) are positive definite matrices of order \(n \). Then if \(X \) and \(Y \) are arbitrary \(n \times m \) matrices, the \(m \times m \) matrix

(5) \[Q = X^*H^{-1}X + Y^*K^{-1}Y - (X + Y)^*(H + K)^{-1}(X + Y) \]

is positive semidefinite.

Proof. Let \(A \) and \(B \) be the Hermitian matrices of order \(2n \),

\[A = \begin{pmatrix} H & X \\ X^* & X^*H^{-1}X \end{pmatrix}, \quad B = \begin{pmatrix} K & Y \\ Y^* & Y^*K^{-1}Y \end{pmatrix}. \]

From (3), it is clear that a nonzero Hermitian matrix is positive semidefinite (definite) if and only if there exists a positive definite principal submatrix whose Schur complement is positive semidefinite (definite). Thus, by inspection, the matrices \(A \) and \(B \) are positive semidefinite. Then, since the sum of any two positive semidefinite matrices is also positive semidefinite (or definite) we have

\[A + B = \begin{pmatrix} H + K & X + Y \\ X^* + Y^* & X^*H^{-1}X + Y^*K^{-1}Y \end{pmatrix} \geq 0. \]
This proves the theorem, as the matrix Q in (5) is the Schur complement of $H+K$ in $A+B$.

3. An inequality for the Schur complement.

Theorem 2. Suppose A and B are Hermitian matrices of order n, partitioned into 2×2 block matrices, $A = (A_{ij})$, $B = (B_{ij})$, $i, j = 1, 2$, where A_{11} and B_{11} are square of order m. If $A \succ 0$, $B \succeq 0$, $A_{11} > 0$, $B_{11} > 0$, then

$$
(A + B/A_{11} + B_{11}) \succeq (A/A_{11}) + (B/B_{11}).
$$

Proof. By the previous arguments, $A_{11} + B_{11} > 0$, and $A + B \succeq 0$. From the definition,

$$
(A + B/A_{11} + B_{11}) = (A_{22} + B_{22}) - (A_{21} + B_{21})(A_{11} + B_{11})^{-1} \cdot (A_{12} + B_{12}).
$$

By Theorem 1,

$$
(A_{21} + B_{21})(A_{11} + B_{11})^{-1}(A_{12} + B_{12}) \leq A_{21}A_{11}^{-1}A_{12} + B_{21}B_{11}^{-1}B_{12}.
$$

Thus

$$
(A + B/A_{11} + B_{11}) \succeq (A_{22} + B_{22}) - (A_{21}A_{11}^{-1}A_{12} + B_{21}B_{11}^{-1}B_{12}) = (A/A_{11}) + (B/B_{11}).
$$

This proves the formula (6), which we now apply to find a new inequality for the determinant of the sum of two positive definite Hermitian matrices.

4. Some determinantal inequalities.

Theorem 3. Suppose A and B are positive definite Hermitian matrices. Let A_k and B_k, $k = 1, \cdots, n$, denote the principal submatrices of order k in the upper left corner of the matrices A and B respectively. Then

$$
| A + B | \geq | A | \left(1 + \sum_{k=1}^{n-1} \frac{| B_k |}{| A_k |} \right) + | B | \left(1 + \sum_{k=1}^{n-1} \frac{| A_k |}{| B_k |} \right).
$$

Corollary. If A and B are positive definite, and $A \succ B$, then

$$
| A + B | > | A | + n | B |.
$$

For the proof of Theorem 3 we need the following lemmas. Lemma 1 is probably well known, as it follows immediately from the Minkowski inequality (4). Lemma 2 follows as a corollary to Lemma 1 and Theorem 2.
Lemma 1. If A and B are positive definite Hermitian matrices and $A \succ B$, then $|A_k| > |B_k|$, $k = 1, \cdots, n$.

Proof. Let $A - B = C \succ 0$. Then $A_k = B_k + C_k$ ($k = 1, \cdots, n$) where A_k, B_k, and C_k are positive definite, since they are principal submatrices of positive definite matrices. Then by (4), $|A_k| \geq |B_k| + |C_k| > |B_k|$ ($k = 1, \cdots, n$).

Lemma 2. If A and B satisfy the conditions of Theorem 2, then
\[|(A + B/A_{11} + B_{11})| \geq |A|/|A_{11}| + |B|/|B_{11}|. \]

Proof. By Theorem 2 and Lemma 1,
\[|(A + B/A_{11} + B_{11})| \geq |(A/A_{11}) + (B/B_{11})| \]
\[\geq |(A/A_{11})| + |(B/B_{11})| \quad \text{by (4)} \]
\[= |A|/|A_{11}| + |B|/|B_{11}| \quad \text{by (2)}. \]

Proof of Theorem 3. We prove the theorem by induction on n. For $n = 2$, we have from (2),
\[(9) \quad |A + B| = |A_1 + B_1| \quad |(A + B/A_1 + B_1)|. \]

By Lemma 2,
\[|(A + B/A_{11} + B_{11})| \geq |A|/|A_{11}| + |B|/|B_{11}|. \]

Thus, using (4) on the first factor on the right in (9),
\[|A + B| \geq (|A_1| + |B_1|)(|A|/|A_{11}| + |B|/|B_{11}|) \]
which proves (7) for $n = 2$.

Now assume (7) holds for matrices of order less than or equal to $n - 1$. Then, if A and B are of order n,
\[|A + B| \geq (|A_{n-1} + B_{n-1}|) \quad |(A + B/A_{n-1} + B_{n-1})|, \]
where, by the inductive assumption,
\[|A_{n-1} + B_{n-1}| \]
\[\geq |A_{n-1}| \left(1 + \sum_{k=1}^{n-2} \frac{|B_k|}{|A_k|}\right) + |B_{n-1}| \left(1 + \sum_{k=1}^{n-2} \frac{|A_k|}{|B_k|}\right), \]
and, by Lemma 2,
\[|(A + B/A_{n-1} + B_{n-1})| \geq |A|/|A_{n-1}| + |B|/|B_{n-1}|. \]

Thus
\[|A + B| \geq \left(|A_{n-1}| \left(1 + \sum_{k=1}^{n-2} \frac{|B_k|}{|A_k|} \right) \right. \]
\[+ |B_{n-1}| \left(1 + \sum_{k=1}^{n-2} \frac{|A_k|}{|B_k|} \right) \left(\frac{|A|}{|A_{n-1}|} + \frac{|B|}{|B_{n-1}|} \right) \]
\[= |A| \left(1 + \sum_{k=1}^{n-2} \frac{|B_k|}{|A_k|} \right) + |B| \left(1 + \sum_{k=1}^{n-2} \frac{|A_k|}{|B_k|} \right) \]
\[+ \frac{|A_{n-1}|}{|B_{n-1}|} \left(1 + \sum_{k=1}^{n-2} \frac{|B_k|}{|A_k|} \right) |B| \]
\[+ \frac{|B_{n-1}|}{|A_{n-1}|} \left(1 + \sum_{k=1}^{n-2} \frac{|A_k|}{|B_k|} \right) |A| \]
\[\geq |A| \left(1 + \sum_{k=1}^{n-1} \frac{|B_k|}{|A_k|} \right) + |B| \left(1 + \sum_{k=1}^{n-1} \frac{|A_k|}{|B_k|} \right). \]

This proves Theorem 3.

The corollary follows as an immediate consequence of Lemma 1, since if \(A > B\),
\[\frac{|A_k|}{|B_k|} > 1 \quad (k = 1, \ldots, n). \]
Hence
\[|A + B| \geq |A| \left(1 + \sum_{k=1}^{n-1} \frac{|B_k|}{|A_k|} \right) + n |B| \geq |A| + n |B|. \]

Acknowledgments. This work was done under contract DA-91-591-EUC-3686 of the U. S. Army with the Institute of Mathematics, University of Basel. The author wishes to thank Professor A. M. Ostrowski for very helpful discussions.

References