Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

Jordan's theorem for solvable groups


Author: Larry Dornhoff
Journal: Proc. Amer. Math. Soc. 24 (1970), 533-537
MSC: Primary 20.40
DOI: https://doi.org/10.1090/S0002-9939-1970-0255680-1
MathSciNet review: 0255680
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We show that every finite solvable group of $ n \times n$ matrices over the complex numbers has a normal abelian subgroup of index $ \leqq {2^{4n/3 - 1}}{3^{10n/9 - 1/3}}$. For infinitely many $ n$, this bound is best possible.


References [Enhancements On Off] (What's this?)

  • [1] H. F. Blichfeldt, Finite collineation groups, University of Chicago Press, Chicago, 1917.
  • [2] R. Brauer, Über endliche lineare Gruppen von Primzahlgrad, Math. Ann. 169 (1967), 73-96. MR 34 #5913. MR 0206088 (34:5913)
  • [3] C. W. Curtis and I. Reiner, Representation theory of finite groups and associative algebras, Pure and Appl. Math., vol. 11, Interscience, New York, 1962. MR 26 #2519. MR 0144979 (26:2519)
  • [4] John D. Dixon, Normal $ p$-subgroups of solvable linear groups, J. Austral. Math. Soc. 7 (1967), 545-551. MR 37 #6373. MR 0230815 (37:6373)
  • [5] -, The fitting subgroup of a linear solvable group, J. Austral. Math. Soc. 7 (1967), 417-424. MR 37 #6372. MR 0230814 (37:6372)
  • [6] W. Feit, Groups which have a faithful representation of degree less than $ p - 1$, Trans. Amer. Math. Soc. 112 (1964), 287-303. MR 28 #5110. MR 0161906 (28:5110)
  • [7] W. Feit and J. G. Thompson, Solvability of groups of odd order, Pacific J. Math. 13 (1963), 775-1029. MR 29 #3538. MR 0166261 (29:3538)
  • [8] B. Huppert, Endliche Gruppen. I, Die Grundlehren der Math. Wissenschaften, Band 134, Springer-Verlag, Berlin, 1967. MR 37 #302. MR 0224703 (37:302)
  • [9] C. Jordan, Mémoire sur les équations différentielles linéaires à intégrale algébrique, J. Reine Angew. Math. 84 (1878), 89-215.
  • [10] J. F. Rigby, Primitive linear groups containing a normal nilpotent subgroup larger than the centre of the group, J. London Math. Soc. 35 (1960), 389-400. MR 23 #A1728. MR 0124416 (23:A1728)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 20.40

Retrieve articles in all journals with MSC: 20.40


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1970-0255680-1
Keywords: Jordan's theorem, abelian normal subgroup, finite solvable group, solvable linear group, Fitting subgroup, primitive linear group
Article copyright: © Copyright 1970 American Mathematical Society

American Mathematical Society