HOMEOMORPHIC MEASURES IN METRIC SPACES

JOHN C. OXTOBY

Abstract. For any nonatomic, normalized Borel measure \(\mu \) in a complete separable metric space \(X \) there exists a homeomorphism \(h: \mathcal{N} \rightarrow X \) such that \(\mu = \lambda h^{-1} \) on the domain of \(\mu \), where \(\mathcal{N} \) is the set of irrational numbers in \((0, 1) \) and \(\lambda \) denotes Lebesgue-Borel measure in \(\mathcal{N} \). A Borel measure in \(\mathcal{N} \) is topologically equivalent to \(\lambda \) if and only if it is nonatomic, normalized, and positive for relatively open subsets.

1. Definitions and results. A topological measure space is a pair \((X, \mu)\), where \(X \) is a topological space and \(\mu \) is a measure on the class of Borel subsets of \(X \). \((X, \mu)\) is homeomorphic to \((Y, \nu)\) if there exists a homeomorphism of \(X \) onto \(Y \) that makes \(\nu \) correspond to \(\mu \), and then \(\nu \) is said to be topologically equivalent to \(\mu \). If \(B \) is a Borel subset of \((X, \mu)\), then \(\mu_B \) denotes the restriction of \(\mu \) to the class of Borel subsets of \(B \). A measure \(\mu \) is everywhere positive if \(\mu(G) > 0 \) for every nonempty open set \(G \), nonatomic if \(\mu(\{x\}) = 0 \) for each \(x \in X \), and normalized if \(\mu(X) = 1 \).

Let \(\mathcal{N} \) denote the set of irrational numbers in \(I = [0, 1] \), and let \(\lambda \) denote the restriction of Lebesgue measure \(m \) to the Borel subsets of \(\mathcal{N} \). It is known \([8, \text{Theorem 2, p. 886}]\) that a Borel measure in the \(n \)-dimensional cube \(I^n \) is topologically equivalent to \(n \)-dimensional Lebesgue-Borel measure in \(I^n \) if and only if it is everywhere positive, nonatomic, normalized, and vanishes on the boundary. A similar theorem will be shown to hold in \(\mathcal{N} \).

Theorem 1. A topological measure space \((X, \mu)\) is homeomorphic to \((\mathcal{N}, \lambda)\) if and only if \(X \) is homeomorphic to \(\mathcal{N} \) and \(\mu \) is an everywhere positive, nonatomic, normalized Borel measure in \(X \). In particular, any such measure in \(\mathcal{N} \) is topologically equivalent to \(\lambda \).

It is known \([2, \S 6, \text{Exercise 8c, p. 84}]\) that if \(X \) is a compact metric space, and \(\mu \) is a nonatomic, normalized Borel measure in \(X \), then \((X, \mu)\) is almost homeomorphic to \((I, \lambda)\), in the sense that there exist sets \(A \subset I \) and \(B \subset X \) such that \(\lambda(I - A) = 0 \), \(\mu(X - B) = 0 \), and \((B, \mu_B)\) is homeomorphic to \((A, \lambda_A)\). We shall show that this conclusion still holds when \(X \) is a complete separable metric space, and that the set \(A \) can always be taken equal to \(\mathcal{N} \).

Received by the editors July 3, 1969.

AMS Subject Classifications. Primary 2813, 2810, 2870; Secondary 5435, 5460.

Key Words and Phrases. Topologically equivalent Borel measures, homeomorphic measure spaces, measure-preserving mapping, complete separable metric space, space of irrational numbers, Cantor set.

419
Theorem 2. If X is a topologically complete separable metric space, and μ is a nonatomic, normalized Borel measure in X, then there exists a G_δ set B in X such that $\mu(X - B) = 0$ and (B, μ_B) is homeomorphic to (\mathfrak{H}, λ).

Any uncountable complete separable metric space X contains a copy of \mathfrak{H} [6, Corollary 2, p. 352]. Theorem 2 implies that the most general nonatomic, normalized Borel measure in such a space can be constructed by mapping \mathfrak{H} into X by a homeomorphism h, and then defining $\mu(E) = \lambda h^{-1}(E)$ for every Borel set E. The completion of μ is equal to μh^{-1}.

Theorem 2 can be generalized immediately to nonseparable spaces whose separability character has measure zero; such a space has an open set of measure zero whose complement is separable [7, Theorem III, p. 137]. On the other hand, the indispensability of completeness and metrizability is indicated by the following remarks.

Remark 1. A separable metric space with a nonatomic, normalized Borel measure need not contain a copy of \mathfrak{H}.

Let X be a subset of I such that both X and $I - X$ meet every nonempty perfect subset of I. Then X has outer Lebesgue measure one and inner measure zero. Any relatively Borel subset A of X is of the form $A = X \cap B$, for some Borel set B in I. The formula $\mu(A) = m(B)$ defines unambiguously a nonatomic, normalized Borel measure μ in the separable metric space X, but X contains no copy of \mathfrak{H}.

Remark 2. A compact Hausdorff space with a nonatomic, normalized, regular Borel measure need not contain a copy of \mathfrak{H}, or even of the set $\{0, 1, \frac{1}{2}, \frac{1}{3}, \ldots \}$.

The Stone space X corresponding to any finite nonatomic measure algebra admits a nonatomic, normalized, regular Borel measure [5, §24]. Since X is compact and basically disconnected, every infinite closed subset contains a copy of βN [4, Problem 9H.2, p. 137], and so its cardinal is at least 2^ω. The product of uncountably many copies of (I, m) is another example in which every compact metrizable subspace has measure zero [2, §8, Exercise 14a, p. 110].

2. Proofs of Theorems 1 and 2. A metrizable space is homeomorphic to \mathfrak{H} if and only if it is topologically complete, separable, 0-dimensional, and nowhere locally compact [1, Satz IV, p. 95]. Hence any nonempty open subset of \mathfrak{H} is homeomorphic to \mathfrak{H}. Likewise, any G_δ set that is both dense and frontier in some topologically complete, separable, 0-dimensional space Y is homeomorphic to \mathfrak{H} [6, Theorem 3, p. 349].
Lemma 1. If \(\mu \) is an everywhere positive, nonatomic, finite Borel measure in \(\mathfrak{M} \), and if \(\{\alpha_i\} \) is a sequence of positive real numbers such that \(\sum \alpha_i = \mu(\mathfrak{M}) \), then there exists a partition of \(\mathfrak{M} \) into open sets \(U_i \) such that \(\mu(U_i) = \alpha_i \) for all \(i \in \mathbb{N} \).

Proof. Let \(a(i, j) = j\alpha_i/(j+1) \) \((i \in \mathbb{N}, j \in \mathbb{N})\). Let \(\{r_k\} \) \((k \in \mathbb{N})\) be an increasing sequence of rational numbers in \((0, 1)\), and let \(r_0 = 0 \). Denote the interval \((r_{k-1}, r_k)\cap \mathfrak{M}\) by \(I(i, j) \), where \((i, j)\) is the \(k\)th term in the ordering of \(\mathbb{N} \times \mathbb{N} \) defined by \((i, j) < (i', j')\) if and only if \(i+j < i'+j' \), or \(i+j = i'+j' \) and \(j < j' \). We wish to determine the sequence \(\{r_k\} \) in such a way that
\[
a(i, j) < \sum_{n=1}^{j} \mu(I(i, n)) < a(i, j + 1)
\]
for all \(i \) and \(j \). Using the fact that \(\mu([0, x] \cap \mathfrak{M}) \) is a strictly increasing continuous map of \([0, 1]\) onto \([0, \mu(\mathfrak{M})]\), it is easy to see that such a sequence \(\{r_k\} \) can be defined inductively, and that \(r_k \) will necessarily tend to 1. Then the sets \(U_i = \bigcup_{i=j}^{\infty} I(i, j) \) constitute a partition of \(\mathfrak{M} \) with the required properties.

Lemma 2. If \(\mu \) and \(\nu \) are two everywhere positive, nonatomic, Borel measures in \(\mathfrak{M} \), if \(\rho \) is a metric compatible with the topology of \(\mathfrak{M} \), and if \(U \) and \(V \) are open sets such that \(\mu(U) = \nu(V) > 0 \), then for each \(\epsilon > 0 \) there exist partitions \(\{U_i\} \) of \(U \) and \(\{V_i\} \) of \(V \) into nonempty open sets of diameter less than \(\epsilon \) such that \(\mu(U_i) = \nu(V_i) \) for all \(i \in \mathbb{N} \).

Proof. Let \(\{H_i\} \) \((i \in \mathbb{N})\) be a partition of \(V \) into nonempty open sets of diameter less than \(\epsilon \). Since \(U \) is a copy of \(\mathfrak{M} \), by Lemma 1 there exists a partition \(\{G_i\} \) of \(U \) into open sets such that \(\mu(G_i) = \nu(H_i) \) for all \(i \). Let \(\{G_{ij}\} \) \((j \in \mathbb{N})\) be a partition of \(G_i \) into nonempty open sets of diameter less than \(\epsilon \). Since \(H_i \) is a copy of \(\mathfrak{M} \) there exists a partition \(\{H_{ij}\} \) of \(H_i \) into open sets such that \(\mu(G_{ij}) = \nu(H_{ij}) \) for all \(j \). The families \(\{G_{ij}\} \) and \(\{H_{ij}\} \) constitute partitions of \(U \) and \(V \) having the required properties.

Proof of Theorem 1. It suffices to prove the second assertion. Let \(\rho \) be a metric with respect to which \(\mathfrak{M} \) is complete. By repeated application of Lemma 2 we obtain partitions \(U_n = \{U(i_1, \ldots, i_n)\} \) and \(V_n = \{V(i_1, \ldots, i_n)\} \) of \(\mathfrak{M} \) into nonempty open sets of \(\rho \)-diameter less than \(1/n \) such that \(U(i_1, \ldots, i_n) \supseteq U(i_1, \ldots, i_{n+1}) \), \(V(i_1, \ldots, i_n) \supseteq V(i_1, \ldots, i_{n+1}) \), and \(\mu(U(i_1, \ldots, i_n)) = \lambda(V(i_1, \ldots, i_n)) \) for all \(n \in \mathbb{N} \) and all sets of indices \(i_k \in \mathbb{N} \). For each \(x \in \mathfrak{M} \) there is a unique sequence \(\{i_n\} \) such that \(x \in \bigcap_{n=1}^{\infty} U(i_1, \ldots, i_n) \). Define \(T(x) = \bigcap_{n=1}^{\infty} V(i_1, \ldots, i_n) \). Then \(T \) is a 1-1 map of \(\mathfrak{M} \) onto itself, and
$T(U(i_1, \ldots, i_n)) = V(i_1, \ldots, i_n)$. Since the union of each of the families \(\{U_n\} \) and \(\{V_n\} \) is a base with the property that any open set is the union of some disjoint subclass, it follows that T is a homeomorphism and that $\mu(E) = \lambda(T(E))$ for every Borel set E in \mathfrak{X}.

Proof of Theorem 2. Let \(\{x_i\} \) be a countable dense sequence in X. Let \(\{r_j\} \) be a sequence of positive real numbers tending to zero such that $\mu(\{x : \rho(x, x_i) = r_j\}) > 0$ for at most countably many values of r_i. (Such a sequence exists because for each i, $\mu(\{x : \rho(x, x_i) = r\}) > 0$ for at most countably many values of r.) Let $S_{ij} = \{x : \rho(x, x_i) = r_j\}$ and $U_{ij} = \{x : \rho(x, x_i) < r_j\}$. Then \(\{U_{ij}\} \) is a base for the topology of X. Let S be the union of all the sets S_{ij}, and let G be the union of all the sets U_{ij} such that $\mu(U_{ij}) = 0$. Then $\mu(G \cup S) = 0$, the G_δ set $Y = X - (G \cup S)$ is a topologically complete, separable, 0-dimensional subspace, and μ_Y is everywhere positive. Let D be a countable dense subset of Y, and let $A = G \cup S \cup D$. Then $\mu(A) = 0$, and the G_δ set $B = Y - D = X - A$ is both dense and frontier in Y. Hence B is homeomorphic to \mathfrak{X}, and μ_B is an everywhere positive, nonatomic, normalized Borel measure in B. By Theorem 1, (B, μ_B) is homeomorphic to (\mathfrak{X}, λ).

3. Uniqueness of (\mathfrak{X}, λ). Let \mathfrak{F} denote the class of topological measure spaces (X, μ), where X is metrizable, separable, and topologically complete (i.e. a Polish space), and μ is a nonatomic, normalized Borel measure in X. The following theorem shows that (\mathfrak{X}, λ) is the only member of this class that is topologically contained in each member of the class.

Theorem 3. If (X, μ) is a member of \mathfrak{F} that is homeomorphic to a subspace of each member of \mathfrak{F}, then (X, μ) is homeomorphic to (\mathfrak{X}, λ).

Proof. By hypothesis, (X, μ) is homeomorphic to some subspace (Y, λ_Y) of (\mathfrak{X}, λ). Since $\lambda(Y) = 1$, Y must be a dense subset of \mathfrak{X}. It follows that Y is nowhere locally compact, as well as topologically complete, separable, and 0-dimensional. Consequently Y, and therefore X, is homeomorphic to \mathfrak{X}. Since λ_Y is everywhere positive, μ must also be. Therefore (X, μ) is homeomorphic to (\mathfrak{X}, λ), by Theorem 1.

4. Approximation of a Borel set by a Cantor subset. As an application of Theorem 2 we give a new proof of the following theorem, recently proved by Gelbaum [3]. As the referee has pointed out, this theorem is implicitly contained in a result of von Neumann [9, Hilfsatz, p. 577].

Theorem 4. Let X be a complete separable metric space, and let μ be
a nonatomic Borel measure in X. Any Borel set A in X with $0 < \mu(A) < \infty$ is the union of a Cantor set and a set of arbitrarily small measure.

Proof. The formula $\nu(E) = \frac{\mu(E \cap A)}{\mu(A)}$ defines a nonatomic, normalized Borel measure ν in X. By Theorem 2, there exists a set B in X such that $\nu(X - B) = 0$ and (B, ν_B) is homeomorphic to (\mathcal{M}, λ), say by h. Then $h(A \cap B)$ is a Borel subset of \mathcal{M} with $\lambda(h(A \cap B)) = 1$. Let C be a compact perfect subset of $h(A \cap B)$ with $\lambda(C) > 1 - \epsilon$. Then $h^{-1}(C) \subseteq A$, $\mu(A - h^{-1}(C)) < \epsilon \mu(A)$, and $h^{-1}(C)$ is compact, perfect, and 0-dimensional, therefore homeomorphic to the Cantor set.

References

Bryn Mawr College