EXPANSIVE HOMEOMORPHISMS ON COMPACT MANIFOLDS

THOMAS O'BRIEN

Abstract. In this paper theorems are proved which provide for lifting and projecting expansive homeomorphisms through pseudo-covering mappings so that the lift or projection is also an expansive homeomorphism. Using these techniques it is shown that the compact orientable surface of genus 2 admits an expansive homeomorphism.

1. Introduction. Given a light open map \(\phi: X \to Y \), the branch set \(B_\phi \) is the set at which \(\phi \) fails to be a local homeomorphism. If the restriction of \(\phi \) to \(X - \phi^{-1}(\phi(B_\phi)) \) is a finite-to-one covering map then \(\phi \) will be called a pseudo-covering map (see Definition 5 in [2]). A homeomorphism, \(f \), of a space \(X \) with metric \(d \), will be called expansive (with expansive constant \(c > 0 \)) if to each pair of distinct points \(x, y \) of \(X \) there corresponds an integer \(n \) such that \(d(f^n(x), f^n(y)) > c \).

In [4] theorems are proved for lifting and projecting expansive homeomorphisms through covering maps and for lifting them through pseudo-covering maps. In §2 of this paper a theorem for projecting expansive homeomorphisms through pseudo-covering maps is proved. In §3, Corollary 3.2 provides for the existence of expansive homeomorphisms on 2-manifolds with less stringent conditions than those of Corollary 4.6 of [4]. In §4 it is proved that the compact orientable surface of genus 2 admits an expansive homeomorphism.

2. A projection theorem. In the following \(M \) and \(N \) are compact \(n \)-manifolds with metrics \(r \) and \(d \) respectively. Let \(\phi: M \to N \) be a pseudo-covering map with \(\phi \) one-to-one on \(\phi^{-1}(\phi(B_\phi)) \). In particular \(\phi^{-1}(\phi(B_\phi)) = B_\phi \) and since \(B_\phi \) is closed the restriction of \(\phi \) to \(B_\phi \) is a homeomorphism. Let \(f: M \to M \) be a fibre-preserving homeomorphism such that \(f \) sends \(B_\phi \) onto \(B_\phi \). Thus \(f \) induces a homeomorphism \(g: N \to N \).

Definition 2.1. The map \(f \) is expansive on fibres if there is a number \(e > 0 \) such that for any two points \(x, y \) in \(N \) there exists an integer \(n \) with \(\min r(f^n(z), f^n(w)) > e \) for each pair \(z \in \phi^{-1}(x), w \in \phi^{-1}(y) \).
Theorem 2.2. Let \(\phi: M \to N \) be a pseudo-covering map and \(f: M \to M \) a fibre-preserving homeomorphism with \(f: B_\phi \to B_\phi \). Let \(g: N \to N \) be the homeomorphism induced on \(N \). Then \(g \) is expansive if and only if \(f \) is expansive on fibres.

Proof. Suppose \(f \) is expansive on fibres with corresponding constant \(e \). Let \(x, y \) be in \(N \). We consider three cases.

Case 1. Both \(x \) and \(y \) are in \(\phi(B_\phi) \). We have assumed that \(\phi \) is one-to-one on \(B_\phi \). Thus the restriction of \(g \) to \(\phi(B_\phi) \) can be expressed as \(\phi \circ \phi^{-1} \). Since \(\phi(B_\phi) \) is compact \(\phi^{-1} \) is uniformly continuous on \(\phi(B_\phi) \) and thus Bryant's theorem [1, Theorem 1] applies to prove \(g \) expansive on \(\phi(B_\phi) \) with some expansive constant \(c \).

Case 2. Both \(x \) and \(y \) in \(N - \phi(B_\phi) \). For each \(b \in B_\phi \) choose an open neighborhood \(S_b \) with center \(b \) such that diameter \(S_b < e/3 \) and also such that if \(r(a, b) > e/3 \) then \(\phi(S_a) \cap \phi(S_b) \) is empty. This can be done since the restriction of \(\phi \) to \(B_\phi \) is a homeomorphism. Now for each \(x \in N - \phi(B_\phi) \) choose an elementary neighborhood \(V_x \) for the covering map associated with \(\phi \) such that the components \(U_{x,i} \) of \(\phi^{-1}(V_x) \) have diameter \(< e \). The sets \(\{ \phi(S_b) \} \cup \{ V_x \} \) form an open cover of \(N \). Let \(\beta \) be the Lebesgue number of this cover. Since \(f \) is expansive on fibres there is an \(m \) such that the points \(f^m(z), f^m(w) \) are not both contained in any of the sets \(U_{x,i} \) or \(S_b \) where \(z \) is any point of the fibre over \(x \) and \(w \) is any point of the fibre over \(y \). Also if \(f^m(z) \) is in \(S_a \) and \(f^m(w) \) is in \(S_b \) then \(r(a, b) > e/3 \) and thus \(\phi(S_a) \cap \phi(S_b) \) is empty. It follows that the points \(g^m(x), g^m(y) \) are not both contained in any element of the cover for \(N \) and therefore \(d(g^m(x), g^m(y)) > \beta \).

Case 3. \(x \in \phi(B_\phi) \) and \(y \in N - \phi(B_\phi) \). Let \(\eta \) be greater than 0 and consider the open set \(N(B_\phi, \eta) \) of points whose distance from \(B_\phi \) is less than \(\eta \). The function \(T: B_\phi \times (M - N(B_\phi, \eta)) \to R \) defined by \(T(b, m) = d(\phi(b), \phi(m)) \) is never zero and hence is always greater than some positive number, \(h \). Thus if the fibre over \(g^m(y) \) lies outside of \(N(B_\phi, \eta) \) for some \(m \) then \(d(g^m(x), g^m(y)) > h \). We consider what happens when the fibre over \(y \) remains close to \(B_\phi \). Since the restriction of \(\phi \) to \(B_\phi \) is a homeomorphism there is a \(\delta > 0 \) such that if \(a, b \) are in \(B_\phi \) and \(d(\phi(a), \phi(b)) < \delta \) then \(r(a, b) < e/2 \). Since \(\phi \) is uniformly continuous there is a \(\mu > 0 \) such that \(r(x, y) < \mu \) implies \(d(\phi(x), \phi(y)) < \delta/2 \). Choose \(\eta < \min(e/2, \mu) \). Let \(b = \phi^{-1}(x) \). Since \(f \) is expansive on fibres we can choose \(m \) so that \(r(f^m(b), f^m(w)) > e \) for each \(w \) in \(\phi^{-1}(y) \).

Suppose \(f^m(w) \) is in \(N(B_\phi, \eta) \). Then \(r(a, f^m(w)) < \eta \) for some \(a \in B_\phi \) and \(r(f^m(b), a) > e/2 \). Then \(d(\phi f^m(w), \phi(a)) = d(g^m(y), \phi(a)) < \delta/2 \) and \(d(\phi f^m(b), \phi(a)) = d(g^m(x), \phi(a)) > \delta \) and hence \(d(g^m(x), g^m(y)) > \delta/2 \). Thus \(g \) is expansive with expansive constant \(\min(c, \beta, h, \delta/2) \).
Conversely suppose f is not expansive on fibres. Let c be any constant >0. Choose $e>0$ such that $r(u,v)<e$ implies $d(\phi(u),\phi(v))<e$. There exist points x,y in N such that for any m there is a $z\in \phi^{-1}(x)$ and a $w\in \phi^{-1}(y)$ and $r(f^m(z),f^m(w))<e$. Therefore $d(g^m(x),g^m(y))<c$ for all m and g is not expansive.

The following theorem, analogous to Theorem 1 in [1], may be useful for modifying homeomorphisms expansive on fibres. Its proof follows that of Bryant's theorem.

Theorem 2.3. If $\phi:M\rightarrow N$ is a pseudo-covering map, $g:M\rightarrow M$ is a fibre-preserving homeomorphism, and $f:M\rightarrow M$ is a homeomorphism which is expansive on fibres, then $g^{-1}fg$ is expansive on fibres.

Proof. Let f be expansive on fibres with expansive constant e. Using the uniform continuity of g, choose η so that $r(a,b)<\eta$ implies $r(g(a),g(b))<e$. Now given x,y in N the sets $\{g(z):z\in \phi^{-1}(x)\}$ and $\{g(w):w\in \phi^{-1}(y)\}$ are fibres. Thus there is an m such that $r(f^m g(z),f^m g(w))>e$ for each z and w. It follows that

$$r((g^{-1}fg)^m(z),(g^{-1}fg)^m(w))=r((g^{-1}f^m g(z),g^{-1}f^m g(w)))>\eta$$

for each z and w and thus $g^{-1}fg$ is expansive on fibres with expansive constant η.

Remark 2.4. The three-fold iterate of Reddy's torus homeomorphism [5, p. 631] is fibre preserving with respect to a pseudo-covering map, ϕ of S^2 by the torus. The map ϕ is defined by $\phi(x,y,z)=(x^2-y^2,2xy,z)$ with the torus represented as in §4 below. However this homeomorphism is not expansive on fibres and hence the homeomorphism induced on S^2 is not expansive.

3. **Lifting expansive homeomorphisms.** Again, $\phi:M\rightarrow N$ will be a pseudo-covering mapping of a compact n-manifold with ϕ one-to-one on $\phi^{-1}(\phi(B_\phi))$. We will also use ϕ for the associated covering map $\phi:M-B_\phi\rightarrow N-\phi(B_\phi)$.

Theorem 3.1. Let $g:N\rightarrow N$ be a homeomorphism which sends $\phi(B_\phi)$ onto $\phi(B_\phi)$. Assume that dimension $B_\phi<n-1$. Then g lifts to a homeomorphism $f:M\rightarrow M$ if and only if $g_\phi\pi_1(M-B_\phi,m)$ is conjugate to $\phi_\phi\pi_1(M-B_\phi,m')$ in $\pi_1(N-\phi(B_\phi),g(n))$. Here m is a point in $\phi^{-1}(n)$ and m' is in $\phi^{-1}(g(n))$.

Proof. The condition of the theorem is equivalent to the statement that the pairs $(M-B_\phi,\phi)$ and $(M-B_\phi, g\phi)$ are isomorphic covering spaces of $N-\phi(B_\phi)$. Hence the condition implies that g lifts to a homeomorphism $f:M-B_\phi\rightarrow M-B_\phi$ and, by the extension theorem of Fox [3, p. 247], f extends uniquely to a homeomorphism $f:M\rightarrow M$ which covers g.

License or copyright restrictions may apply to redistribution; see http://www.ams.org/journal-terms-of-use
In particular, if g is homotopic to the identity by a homotopy which leaves $\phi(B_\phi)$ fixed, then the condition of this theorem is satisfied. This yields the following improvement of Corollary 4.6 in [4].

Corollary 3.2. If g is an expansive homeomorphism of the 2-manifold N on itself, ϕ is a pseudo-covering map of M onto N and g is homotopic to the identity by a homotopy which leaves the set $\phi(B_\phi)$ pointwise fixed, then g can be lifted to an expansive homeomorphism of M.

Proof. Since M and N are compact 2-manifolds, B_ϕ consists of a finite set of points and thus has dimension 0. The proof then follows from the above observation on Theorem 3.1, and an application of Theorem 3.4 in [4].

4. **Expansive homeomorphism for a surface of genus 2.** In this section we prove the following.

Theorem 4.1. The compact orientable surface of genus 2 admits an expansive homeomorphism.

Proof. Let M be the surface in question and N the torus. The proof consists in showing that if g is the three-fold iterate of the Reddy torus homeomorphism, then g lifts to M through the pseudo-covering map of N by M described in [4, §5]. Then Theorem 3.4 of [4] completes the proof. It suffices to show that g lifts through the associated covering map.

Represent the torus as the set of points,

$$\{(x, y, z) \in \mathbb{R}^3: ((x^2 + z^2)^{1/2} - 2)^2 + y^2 = 1\}.$$

The branch set image then consists of the two points $(0, 0, 3)$ and $(0, 0, -3)$. Choose $(0, 0, 1)$ as basepoint, m. Then $\pi_1(M - \phi(B_\phi), m)$ is a free group on three generators $\alpha, \beta,$ and γ where α is a loop around the torus in the portion $x>0$, β corresponds to the circle $x^2+z^2=1$, and γ is represented by a small circle around the point $(0, 0, 3)$. The homeomorphism g is induced by a linear map of the plane. We identify the lower half of the unit square with the back half of the torus, the portion corresponding to $y<0$. Thus $(0, 1/2), (1/2, 1/2)$ correspond to the branch point images $(0, 0, 3), (0, 0, -3)$ respectively. The homeomorphism g leaves the points on the z-axis fixed. The image of the fundamental group of $M - B_\phi$ under ϕ_* is the subgroup of index 2 generated by $\alpha, \beta, \gamma\alpha\gamma^{-1}, \gamma\beta\gamma^{-1}$, and γ^2. This set of generators corresponds to the Schreier system consisting of 1 and γ. Under g_* we have the following:
\[g^*(\gamma) = \gamma \]
\[g^*(\alpha) = \alpha \beta \gamma \alpha^2 \beta \gamma \alpha^3 \beta \alpha \gamma \alpha, \]
\[g^*(\beta) = \alpha \beta \gamma \alpha^2 \beta \gamma \alpha^3 \beta \alpha \gamma \alpha, \]
\[g^*(\alpha \gamma \gamma^{-1}) = \gamma g^*(\alpha) \gamma^{-1}, \]
\[g^*(\gamma \beta \gamma) = \gamma g^*(\beta) \gamma^{-1}, \]
\[g^*(\gamma^2) = \gamma^2. \]

It is easy to check that under \(g \), the generators of the subgroup go into the subgroup and thus \(g \) sends this subgroup onto itself. Therefore \(g \) lifts through the associated covering map and we are finished.

Remark 4.2. If we consider the pseudo-coverings of the torus by surfaces of higher genus this situation does not occur. However it may be possible to show that under \(g \), the subgroup of \(\pi_1(N - \phi B_\ast) \) corresponding to the associated covering map goes into a conjugate subgroup and thus get a lifting.

References

Bowling Green State University