ON SLOW VARIATION

GÉRARD LETAC

A positive function L on the positive real line is said to be "slowly varying at infinity" if, for each $t > 0$:

$$
\lim_{x \to \infty} \frac{L(tx)}{L(x)} = 1, \quad t \in (0, \infty).
$$

Karamata [3] has proved that if L is continuous, then

$$
L(x) = a(x) \exp \left(\int_1^x \frac{\epsilon(y)}{y} \, dy \right)
$$

where $\epsilon(x) \to 0$ and $a(x) \to c \in (0, \infty)$ as $x \to +\infty$. Feller [2, pp. 272–274] gives a new exposition of the theory and a proof of (1), implicitly assuming not the continuity, but the local integrability of L on some half line (A, ∞). But it has been already proved [1], [4] that measurability of L is enough.

From (1), it follows that [2, footnote p. 302]:

$$
\lim_{x \to +\infty} x^\alpha L(x) = \infty, \quad \lim_{x \to +\infty} x^{-\alpha} L(x) = 0 \quad (\alpha > 0).
$$

The aim of this note is to show that L measurable implies that L is locally bounded on some half line (A, ∞) (thus preparing for Feller's exposition) and to give a short proof of (2) which avoids an appeal to (1), by establishing the following theorem:

Theorem. If L is slowly varying and measurable, then for every $\alpha > 0$, there exists $X(\alpha)$ and $T(\alpha)$ such that $x > X(\alpha)$ and $t > T(\alpha)$ imply:

$$
t^{-\alpha} \leq L(tx)/L(x) \leq t^\alpha.
$$

Proof. Let $S_n = \{t > 1: t^{-\alpha} \leq L(tx)/L(x) \leq t^\alpha \forall x > n\}$.

From slow variation it follows:

$$
\bigcup_{n=1}^{\infty} S_n = \{t: t > 1\}.
$$

Received by the editors April 29, 1969.

1 The author is indebted to the referee for these references.
Since L is measurable, there exists n_0 such that S_{n_0} has a positive Lebesgue measure. Now $S_nS_n \subseteq S_n$, i.e. S_n is a multiplicative semi-group. Hence the interior of S_{n_0} is not empty; this implies that S_{n_0} contains a half-line $(T(\alpha), \infty)$, and we can take $X(\alpha) = n_0$.

The idea of the proof can be used [5] to get uniform convergence of $L(xt)/L(x)$ on compact subsets of R^+.

Bibliography

Université de Montréal