METRIC DIMENSION OF COMPLETE METRIC SPACES

GLENN A. BOOKHOUT

1. Introduction and results. For integers \(n \geq 3 \), let \((X_n, \rho)\) be a metric space such that

(i) \(X_n \subseteq (K_n, \rho) \), a compact \(n \)-dimensional metric space;

(ii) \(X_n = K_n - \bigcup_{i=1}^{\infty} A_i \), where the \(A_i \)'s are mutually disjoint and closed in \(K_n \); and

(iii) \(\mu \dim(X_n, \rho) = \lfloor n/2 \rfloor \) and \(\dim X_n = n - 1 \).

(Here \(\mu \dim \) denotes metric dimension, which is defined in the next section, and \(\dim \) denotes covering dimension.) K. Sitnikov [8, p. 23] and K. Nagami and J. H. Roberts [6, p. 426] have constructed such spaces.

The result of the present paper is stated in the following theorem.

Theorem. For integers \(n \geq 3 \), let \((X_n, \rho)\) be a metric space with properties (i)–(iii) above. Then there exists a complete metric \(\sigma \) on \(X_n \) equivalent to \(\rho \) such that

\[
\mu \dim(X_n, \sigma) \leq \lfloor n/2 \rfloor + 1.
\]

K. Nagami and J. H. Roberts posed the following question. Is \(\mu \dim(X, d) = \dim X \) for all complete metric spaces \((X, d)\)? In [1, p.166] Richard E. Hodel posed an analogous question. Is \(d_2(X, d) = \dim X \) for all complete metric spaces \((X, d)\)? (The metric-dependent dimension function \(d_2 \) is defined in the next section.) It is known (see [6, Theorem 4, p. 422]) that \(d_2(X, d) \leq \mu \dim(X, d) \) for all metric spaces \((X, d)\). The present theorem gives a negative answer to these questions, since for \(n \geq 5 \),

\[
\mu \dim(X_n, \sigma) \leq \lfloor n/2 \rfloor + 1 < n - 1 = \dim X_n.
\]

M. Katětov [4, p. 166] proved that \(\dim X \leq 2 \mu \dim(X, d) \) for all nonempty metric spaces \((X, d)\). In view of this result of Katětov and the present theorem, the following problem is suggested.

Problem. For integers \(n \geq 3 \), do there exist complete metric spaces \((X_n, d)\) with \(\mu \dim(X_n, d) = \lfloor n/2 \rfloor \) and \(\dim X_n = n - 1 \)?

Received by the editors June 16, 1969.

This research is part of a doctoral dissertation prepared at Duke University under the supervision of Professor J. H. Roberts and was supported in part by the National Science Foundation under grants GP-5222 and GP-5919.
2. **Definitions.** In this paper three metric-dependent dimension functions are considered:

(i) metric dimension, denoted by \(\dim \);

(ii) \(d_2 \), introduced by K. Nagami and J. H. Roberts in [5, p. 602]; and

(iii) \(d_6 \), introduced by Richard E. Hodel in [3, p. 83].

Metric dimension, \(d_2 \), and \(d_6 \) are functions from the class of all metric spaces \((X, d) \) into \(\{-1, 0, 1, \ldots ; \infty \} \). Condensed definitions of these functions restricted to nonempty metric spaces are as follows.

Definition. \(\dim(X, d) \) is the smallest integer \(n \) such that for all \(\varepsilon > 0 \) there exists an open cover \(\mathcal{U}(\varepsilon) \) of \(X \) with (1) order \(\mathcal{U}(\varepsilon) \geq n \) and (2) mesh \(\mathcal{U}(\varepsilon) < \varepsilon \).

Definition. \(d_2(X, d) \) is the smallest integer \(n \) such that given any \(n + 1 \) pairs \(\{ C_i, C'_i \}_{i=1}^{n+1} \) of closed sets with \(d(C_i, C'_i) > 0 \) for each \(i \), there exist closed sets \(\{ B_i \}_{i=1}^{n+1} \) such that

(i) \(B_i \) separates \(C_i \) and \(C'_i \) in \(X \) for each \(i \) and

(ii) \(\bigcap_{i=1}^{n+1} B_i = \emptyset \).

Definition. \(d_6(X, d) \) is the smallest integer \(n \) such that given any countable number of pairs \(\{ C_i, C'_i \}_{i=1}^{\omega} \) of closed sets with \(d(C_i, C'_i) \geq \delta \) for each \(i \) for some \(\delta > 0 \), there exist closed sets \(\{ B_i \}_{i=1}^{\omega} \) such that

(i) \(B_i \) separates \(C_i \) and \(C'_i \) in \(X \) for each \(i \) and

(ii) order \(\{ B_i \}_{i=1}^{\omega} \leq n \).

3. **Proof of the theorem.**

3.1. Reducing the problem. Fix an integer \(n \geq 3 \). Let \((X_n, \rho) \) be a metric space with properties (i)–(iii) above. We may assume that every \(A_i \) is nonempty. Define

\[
 f_i(x) = \frac{1}{\rho(x, A_i)}, \quad (x \in K_n - A_i, i \geq 1);
\]

\[
 \alpha_i(x, y) = 2^{-i} \frac{|f_i(x) - f_i(y)|}{1 + |f_i(x) - f_i(y)|}, \quad (x, y \in K_n - A_i, i \geq 1);
\]

\[
 \sigma(x, y) = \rho(x, y) + \sum_{i=1}^{\infty} \alpha_i(x, y), \quad (x, y \in X_n).
\]

It is known (see [2, Theorem 2-76, p. 85]) that \(\sigma \) is a complete metric on \(X_n \) equivalent to \(\rho \).

We shall prove that \(\dim(X_n, \sigma) \leq \lceil n/2 \rceil + 1 \). It is proved in [3, p. 85] that \(d_6(X, d) = \dim(X, d) \) for all separable metric spaces \((X, d) \). Now \(X_n \) is separable, so it suffices to prove that \(d_6(X_n, \sigma) \leq \lceil n/2 \rceil + 1 \). Let \(\{ C_i, C'_i \}_{i=1}^{\omega} \) be a countable number of pairs of closed
sets in X_n with $\sigma(C_i, C'_i) \geq \epsilon$ for each i for some $\epsilon > 0$. We want to show that there exist closed sets \(\{B_i\}_{i=1}^n \) in X_n such that

(i) B_i separates C_i and C'_i in X_n for each i and

(ii) order $\{B_i\}_{i=1}^n \leq \lceil n/2 \rceil + 1$.

Since $\sum_{i=1}^n \alpha_i$ converges uniformly in X_n, there exists an integer $N > 1$ such that $\sum_{i=N+1}^\infty \alpha_i(x, y) < \epsilon/2$ for all $x, y \in X_n$. Define

$$\sigma^N(x, y) = \rho(x, y) + \sum_{i=1}^N \alpha_i(x, y), \quad (x, y \in X_n).$$

$$A = \bigcup_{i=1}^N A_i.$$

Then clearly σ^N is a metric on X_n equivalent to ρ. Also, since $\sigma(C_i, C'_i) \geq \epsilon$ for all i, it follows that

$$\sigma^N(C_i, C'_i) \geq \frac{\epsilon}{2} \text{ for all } i.$$

3.2. Definitions

Define

$$\delta = \min\{\rho(A_i, A_j) : i, j \in \{1, 2, \ldots, N\}, i \neq j\},$$

$$\gamma = \min \left\{ \frac{\delta}{4}, \frac{\epsilon}{6}, \frac{\epsilon \delta^2}{24(N-1)} \right\}.$$

3.3. Assertion 1

For all numbers a such that $0 < a \leq \delta/4$, there exists an $\epsilon(a) > 0$ such that $\rho(C_i, C'_i) < \gamma$ in $S(\epsilon(a))$ (\(\equiv \{x \in K_n : a - \epsilon(a) < \rho(x, A_i) < a + \epsilon(a)\} \)) for $i \geq 1$.

Proof. Fix a such that $0 < a \leq \delta/4$. Choose $\epsilon(a) > 0$ such that $\epsilon(a) < \min\{a/2, \epsilon a^2/48\}$. Suppose there exists an integer $i \geq 1$ such that $\rho(C_i, C'_i) < \gamma$ in $S(\epsilon(a))$. Then there exist points $x \in C_i$ and $y \in C'_i$ such that $\{x, y\} \subset S(\epsilon(a))$ and $\rho(x, y) < \gamma$. From the definition of γ and the choice of $\epsilon(a)$, it follows that $\rho(x, A_i) < \delta/4$, $\rho(x, A) < 3\delta/8$, and $\rho(y, A) < 3\delta/8$. Therefore by the definition of δ, there exists an integer $k \in \{1, 2, \ldots, N\}$ such that $\rho(x, A_k) < 3\delta/8$ and $\rho(y, A_k) < 3\delta/8$. Thus for $i \in \{1, 2, \ldots, N\}$ and $i \neq k$, $\rho(x, A_i) > \delta/2$ and $\rho(y, A_i) > \delta/2$. It follows that $a - \epsilon(a) < \rho(x, A_k) < a + \epsilon(a)$ and $a - \epsilon(a) < \rho(y, A_k) < a + \epsilon(a)$. Hence $|\rho(x, A_k) - \rho(y, A_k)| < 2\epsilon(a)$. Finally, $\rho(x, A_k) > a/2$ and $\rho(y, A_k) > a/2$. From the definitions of σ^N and γ and the inequalities above, it follows that
\[\sigma^N(x, y) \leq \rho(x, y) + \sum_{i=1}^{N} |f_i(x) - f_i(y)| \]
\[\leq \rho(x, y) + \sum_{i=1}^{N} \left| \frac{\rho(x, A_i) - \rho(y, A_i)}{\rho(x, A_i) \cdot \rho(y, A_i)} \right| \]
\[\leq \rho(x, y) + \sum_{i=1}^{N} \left(\frac{\rho(x, y)}{\rho(x, A_i) \cdot \rho(y, A_i)} + \frac{\left| \rho(x, A_k) - \rho(y, A_k) \right|}{\rho(x, A_k) \cdot \rho(y, A_k)} \right) \]
\[< \gamma + \frac{(N-1)\gamma}{\delta^2/4} + \frac{2\epsilon(a)}{a^2/4} \]
\[< \epsilon/6 + \epsilon/6 + \epsilon/6 = \epsilon/2, \]

contradicting (1).

3.4. Construction of \(C_{ij}, C'_{ij} \). Now (i) \(\{S(\epsilon(a)) : 0 < a \leq \delta/4\} \) is a collection of open sets in \(K_\mathbb{N} \) covering \(\{x \in K_\mathbb{N} : 0 < \rho(x, A) \leq \delta/4\} \) and (ii) \(\{x \in K_\mathbb{N} : \delta/(4 \cdot 2^j) \leq \rho(x, A) \leq \delta/(4 \cdot 2^{j-1})\} \) is compact for \(j \geq 1 \). Using (i) and (ii), it is easy to prove that there exist a sequence \(\{a_j\}_{j=1}^{\infty} \) of positive numbers \(\leq \delta/4 \) such that
- (a) \(\bigcup_{j=1}^{\infty} S(\epsilon(a_j)) \) covers \(\{x \in K_\mathbb{N} : 0 < \rho(x, A) \leq \delta/4\} \) and
- (b) the sequence \(\{a_j\}_{j=1}^{\infty} \) converges to 0.

We can choose a sequence \(\{\delta_j\}_{j=1}^{\infty} \) of distinct positive numbers such that \(\delta_1 = \delta/4 \), \(\{\delta_j\}_{j=1}^{\infty} \) is a strictly decreasing sequence converging to 0, and for each \(j \geq 2 \) there exists an integer \(k \geq 1 \) such that
\[\delta_{j-1} - \epsilon(a_k) < \delta_{j+1} < \delta_{j-1} < a_k + \epsilon(a_k). \]

Now we define distinct positive numbers \(\{\delta_{ij}\}_{i,j=1}^{\infty} \) as follows. Fix \(j \geq 1 \). Define \(\delta_{ij} = \delta_j \). For \(i > 1 \) choose the \(\delta_{ij} \)'s to be distinct numbers strictly between \(\delta_j \) and \(\delta_{j+1} \).

Now define
\[E_{i1} = \{x \in X_n : \rho(x, A) \geq \delta_{i1}\}, \quad (i \geq 1) ; \]
\[E_{ij} = \{x \in X_n : \delta_{ij} \leq \rho(x, A) \leq \delta_{i-1,j-1}\}, \quad (i \geq 1, j > 1) ; \]
\[C_{ij} = C_i \cap E_{ij}, \quad C'_{ij} = C'_i \cap E_{ij}, \quad (i, j \geq 1) . \]

3.5. Assertion 2. There exists a \(\tau > 0 \) such that \(\rho(C_{ij}, C'_{ij}) \geq \tau \) for \(i, j \geq 1 \).

Proof. Define \(\tau = \min \{\gamma, \epsilon \delta^2/4N\} \).

Case 1. \(j = 1 \). Suppose there exists an integer \(i \geq 1 \) such that
\(\rho(C, C') < \tau \). Let \(x \in C \) and \(y \in C' \) be such that \(\rho(x, y) < \tau \). Note that \(\rho(x, A) > \delta_2 \) and \(\rho(y, A) > \delta_2 \), since \(\{x, y\} \subset E_i \). Hence

\[
\sigma^N(x, y) \leq \rho(x, y) + \sum_{i=1}^N \frac{|\rho(x, A_i) - \rho(y, A_i)|}{\rho(x, A_i) \cdot \rho(y, A_i)} \\
\leq \rho(x, y) + \sum_{i=1}^N \frac{\rho(x, y)}{\rho(x, A_i) \cdot \rho(y, A_i)} \\
< \tau + N\tau / \delta_2^2 \\
< \epsilon / 4 + \epsilon / 4 = \epsilon / 2,
\]
a contradiction to (1).

Case 2. \(j > 1 \). Fix \(i \geq 1 \) and \(j > 1 \). Now by the definition of \(E_{ij} \) and by (2),

\[
E_{ij} \subset \{ x \in X_n : \delta_{j+1} \leq \rho(x, A) \leq \delta_{j-1} \} \\
\subset S(\epsilon(a))
\]
for some \(a \) such that \(0 < a \leq \delta / 4 \). Therefore by the definitions of \(C_{ij} \) and \(C'_j \) and Assertion 1, \(\rho(C_{ij}, C'_j) \geq \gamma \geq \tau \).

3.6. Lemma [7]. Let \(X \) be a topological space, let \(C \) and \(C' \) be disjoint closed sets in \(X \), and let \(\{D_j\}_{j=0}^\infty \) be an open cover of \(X \) such that \(D_0 = \emptyset \) and \(\overline{D}_j \subset D_{j+1} \) for all \(j \geq 1 \). Suppose there exist closed sets \(\{B_j\}_{j=1}^\infty \) in \(X \) such that \(B_j \subset \overline{D}_j - D_{j-1} \) for \(j \geq 1 \) and \(B_j \) separates \(C \cap (D_j - D_{j-1}) \) and \(C' \cap (D_j - D_{j-1}) \) in \(D_j - D_{j-1} \) for \(j \geq 1 \). Then there exists a closed set \(B \) in \(X \) such that \(B \) separates \(C \) and \(C' \) in \(X \) and \(B \subset \bigcup_{j=1}^\infty (B_j \cup (\overline{D}_j - D_j)) \).

3.7. Conclusion of the proof of the theorem. By Assertion 2 and the equality \(d_\delta(X_n, \rho) = [n/2] \), there exist closed sets \(\{B'_{ij}\}_{i,j=1}^\infty \) in \(X_n \) such that \(B'_{ij} \) separates \(C_{ij} \) and \(C'_{ij} \) in \(X_n \) for \(i, j \geq 1 \) and order \(\{B'_{ij}\}_{i,j=1}^\infty \leq [n/2] \). For \(i \geq 1 \) define \(D_{i0} = \emptyset \). For \(i, j \geq 1 \) define \(D_{ij} = \{ x \in X_n : \rho(x, A) > \delta_{ij} \} \) and \(B_{ij} = B'_{ij} \cap (\overline{D}_{ij} - D_{i,j-1}) \), where for every \(i \) and \(j \) the closure of \(D_{ij} \) is taken with respect to \(X_n \). Then clearly \(B_{ij} \) separates \(C_i \) and \(C'_j \) in \(D_{ij} - D_{i,j-1} \) for \(i, j \geq 1 \) and

\[
\text{order}\{B_{ij}\}_{i,j=1}^\infty \leq [n/2].
\]

Now fix \(i \geq 1 \). Clearly \(X_n, C_i, C'_i, \{D_{ij}\}_{j=0}^\infty \), and \(\{B_{ij}\}_{j=1}^\infty \) satisfy the conditions of the lemma. Therefore there exists a closed set \(B_i \) in \(X_n \) such that \(B_i \) separates \(C_i \) and \(C'_i \) in \(X_n \) and

\[
B_i \subset \bigcup_{j=1}^\infty (B_{ij} \cup (\overline{D}_{ij} - D_{ij})).
\]
But for $j \geq 1$,

$$\overline{D}_{ij} - D_{ij} \subset \{ x \in X_n : \rho(x, A) = \delta_{ij} \}. $$

Hence

$$B_i \subset \bigcup_{j=1}^{\infty} (B_{ij} \cup \{ x \in X_n : \rho(x, A) = \delta_{ij} \}).$$

Therefore, by (3) and the fact that the δ_{ij}'s are distinct for $i,j \geq 1$, we have that order $\{ B_i \}_{i=1}^{\infty} \leq \lfloor n/2 \rfloor + 1$, and the proof is complete.

REFERENCES

Duke University