A FIVE SPHERE DECOMPOSITION OF E^{2n-1}

DAVID GILLMAN

I. Introduction. R. H. Bing and M. L. Curtis have exhibited a decomposition of Euclidean 3-dimensional space E^3 into twelve mutually disjoint circles and points not on the circles such that the associated decomposition space cannot be embedded in E^4 [1]. Their method consists in showing that the space contains a certain 2-dimensional polyhedron that Flores has proved to be impossible to embed in E^4 [2]. The construction of Bing and Curtis was later modified by R. H. Rosen, who, by improving the result of Flores, also exhibited a decomposition of E^3 that cannot be embedded in E^4, and in which he used only six circles instead of twelve [4]. In the opposite direction, R. P. Goblirsch showed that every decomposition using only three circles as nondegenerate elements can be embedded in E^4 [3]. Thus, for the numbers four and five the question remained open. Rosen conjectured in [4] that one could build an example by using five circles in E^3 such that each circle links exactly two others. In this paper we show this conjecture to be correct. Moreover, our argument begins in a lower dimension: We construct an analogous decomposition of S^1 with five nontrivial elements such that the associated decomposition space cannot be embedded in S^2. The example conjectured by Rosen then becomes the second step in an induction argument. Thus we show that for each integer $n, n \geq 1$, there exists a decomposition of S^{2n-1} with nondegenerate elements consisting of five $(n-1)$-spheres such that the associated decomposition space cannot be embedded in S^{2n}. This inductive viewpoint was inspired by a paper of Joseph Zaks [5], in which decompositions of E^{2n-1} with finitely many nondegenerate elements were constructed for all $n \geq 1$.

II. Embedding an n-complex in S^{2n-1}. Let N^1 denote the 1-skeleton of a 4-simplex with vertices a_1, b_1, c_1, d_1, and e_1. Let N^2 denote the join $V(N^1, \{a_2, b_2, c_2\})$ of N^1 with the three point space $\{a_2, b_2, c_2\}$. Proceeding inductively, N^n is defined as $V(N^{n-1}, \{a_n, b_n, c_n\})$. It is shown in [2] and [4] that N^n cannot be embedded in E^{2n}. We name five n-simplices of N^n:

Received by the editors April 22, 1969.

1 The preparation of this paper was sponsored in part by NSF Grant GP-6530.
Setting $N^n = N^n - \sum_1^5 \text{Int } D_i$, we find that N^n embeds in S^{2n}. In fact, it embeds in S^{2n-1}! Rather than prove this fact, which would require cumbersome notation, we establish a weaker result, which suffices for our purposes. We call two points of a geometric complex distant if they lie in disjoint, closed simplexes of the complex.

Lemma. For $n \geq 1$, there exists a map $f_n : N^n - S^{2n-1}$ such that no two distant points of N^n have the same image.

![Figure 1](image-url)

Figure 1

Proof. An induction argument begins with the fact that N^1 is homeomorphic to S^1 as is shown in Figure 1; call such a homeomorphism f_1. For $n = 2$, the reader is advised first to familiarize himself
with the visualizations given in [1]. In fact, for \(n = 2 \), Bing and Curtis construct geometrically just what we will do notationally, except that their complex "lacks" three 2-cells instead of the five 2-cells that \(N^2 \) "lacks." We regard \(S^3 \) as the join \(V(S^1, S^1) \), with \(f_1 \) viewed as an embedding of \(N^2 \) into the first factor of \(V(S^1, S^1) \), and with \(\{a_2, b_2, c_2\} \) viewed as a subset of the second factor. Then \(V(f_1(N^2), \{a_2, b_2, c_2\}) \) is a subset of \(V(S^1, S^1) \) in a natural way; this provides us with an embedding \(f_2 \) of all but ten 2-simplices of \(N^2 \) into \(S^3 \). We select points \(p, q, \) and \(r \) in the second factor of \(V(S^1, S^1) \) so that this factor is composed of the six arcs \(a_2p, pb_2, b_2q, qc_2, c_2r, ra_2 \). We define \(f_2(a_1c_1) \) as \(V(f_1(Bd a_1c_1), p) \), \(f_2(a_1c_1a_2) \) as \(V(f_1(Bd a_1c_1), a_2p) \) as illustrated in

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use
Figure 2, and \(f_2(a_1c_1b_2) \) as \(V(f_1(\text{Bd } a_1c_1), pb_2) \). Next, we define \(f_2(a_1d_1) \) as \(V(f_1(\text{Bd } a_1d_1), p) \), \(f_2(a_1d_1a_2) \) as \(V(f_1(\text{Bd } a_1d_1), a_2p) \) as illustrated in Figure 2, and \(f_2(a_1d_1b_2) \) as \(V(f_1(\text{Bd } a_1d_1), pb_2) \). Similarly, we define \(f_2(b_1d_1) \) as \(V(f_1(\text{Bd } b_1d_1), q) \) and insert \(f_2(b_1d_1b_2) \) and \(f_2(b_1d_1c_2) \), \(f_2(b_1e_1) \) as \(V(f_1(\text{Bd } b_1e_1), q) \) and insert \(f_2(b_1e_1b_2) \) and \(f_2(b_1e_1c_2) \). Finally, we define \(f_2(c_1e_1) \) as \(V(f_1(\text{Bd } c_1e_1), r) \), then insert \(f_2(c_1e_1c_2) \) and \(f_2(c_1e_1a_2) \). Thus \(f_2 \) has been defined, and one may verify that it satisfies the lemma; in fact, a small adjustment would make \(f_2 \) an embedding.

For \(n = 3 \), we let \(f_2 \) map into the first factor of \(V(S^3, S^1) \), and \(a_3, p', b_3, q', c_3, r' \) be consecutive points in the second factor. Then \(f_3(a_1c_1c_2) \) is defined as \(V(f_2(\text{Bd } a_1c_1c_2), p') \); then \(f_3(a_1c_1c_2a_3) \) and \(f_3(a_1c_1c_2b_3) \) are inserted as before. The continuation is just a notational exercise.

III. Insertion of five annuli.

Theorem. For each integer \(n, n \geq 1 \), there exists a decomposition of \(S^{2n-1} \) with nondegenerate elements consisting of five \((n-1)\)-spheres such that the associated decomposition space cannot be embedded in \(S^{2n} \).

Proof. Let \(A' \) denote the subarc of \(S^1 \) with interior point \(f_1(a_1) \)
and end points \(f_i(a_i) + f_i(b_i) \); similarly \(B' \) has interior point \(f_i(b_i) \) and end points \(f_i(a_i) + f_i(c_i) \); analogously we define \(C', D', \) and \(E' \). We set
\[
A = V(A', S^{2n-3}) \subset S^{2n-1},
\]
and similarly for \(B, C, D, \) and \(E \). The map
\[
f_n: N^n \to S^{2n-1}
\]
can be extended to \(N^n \) so that
\[
f_n(\text{Int} \, D_1) \subset \text{Int} \, B, \quad f_n(\text{Int} \, D_2) \subset \text{Int} \, E, \quad f_n(\text{Int} \, D_3) \subset \text{Int} \, C, \quad f_n(\text{Int} \, D_4) \subset \text{Int} \, A, \quad f_n(\text{Int} \, D_5) \subset D,
\]
with \(f_n/\text{Int} \, D_i \) an embedding for all \(i \). We discard an open disk \(\theta_i \) from \(f_n(\text{Int} \, D_i) \), leaving an annulus \(U_i \) with boundary consisting of \(\alpha_i = \text{Bd} \, f_n(D_i) \) plus another \(n \)-sphere which we call \(\beta_i \). By choosing \(\theta_i \) sufficiently large, we may ensure that
\[
U_1 \cdot U_3 = U_1 \cdot U_4 = U_2 \cdot U_4 = U_2 \cdot U_5 = U_3 \cdot U_5 = \emptyset,
\]
as the corresponding \(\alpha_i \)'s are disjoint. In fact, for all other pairs \(U_i \cdot U_j \) with \(i \neq j \), this intersection will be precisely \(\alpha_i \cdot \alpha_j \). For example, to see that \(U_1 \cdot U_2 = \alpha_1 \cdot \alpha_2 \), observe that \(U_1 - \alpha_1 \subset \text{Int} \, B, \quad U_2 - \alpha_2 \subset \text{Int} \, E, \) and \(\text{Int} \, B \cdot \text{Int} \, E = \emptyset \).

We wish to show that the decomposition of \(S^{2n-1} \) with nondegenerate elements \(\beta_1, \beta_2, \ldots, \beta_5 \) does not embed in \(S^{2n} \). We show that this would imply a map of \(N^n \) into \(S^{2n} \) such that no two distant points of \(N^n \) have the same image, contradicting [4]. All that needs to be checked is how the annuli \(U_i - \alpha_i \) intersect \(N^n \) in \(S^{2n-1} \). We already know that they do not intersect each other. Furthermore, it is easy to require that \(U_i - \alpha_i \) intersects a simplex \(\Delta \) of \(N^n \) only if they share a common vertex, by increasing the size of \(\theta_i \) if necessary. It remains to show that if \(\beta_1 \cdot \Delta \neq \emptyset \) and \(\beta_1 \cdot \Delta_2 \neq \emptyset \), then \(\Delta_1 \) and \(\Delta_2 \) have a common vertex. For notational convenience, assume that \(i = 1 \), so \(\beta_1 \subset \text{Int} \, B \). By general position, we may assume that \(\Delta_1 \) and \(\Delta_2 \) are both \(n \)-simplices on \(N^n \). But any two \(n \)-simplices in \(\text{Int} \, B \) have a common vertex.

IV. Questions. Let us first observe that our result is the best possible for \(n = 1 \); any decomposition of \(S^1 \) with four (or less) nondegenerate elements can be embedded in \(S^2 \) without great difficulty. For \(n \geq 2 \), however, unsolved problems abound. For example, by using methods of Goblirsch [3], one can embed all four circle decompositions of \(S^3 \) in \(S^4 \) with one exception, illustrated in Figure 3. Can this example also be embedded in \(S^4 \)? Note that care must be taken in this example that the four circles do not lie on a common torus in \(S^3 \); that is, these four circles do not all link each other in the most natural way. Indeed, if they did, the technique of [3] would give an embedding.

If we do not require circles but merely simple closed curves, then
Figure 4 gives a decomposition of S^3 with only three nondegenerate sets. Can this example be embedded in S^4? Note that Goblirsch’s technique can not be applied to this example. Indeed, this question is unsolved if we do not require simple closed curves, but merely continuua.

If K is an n-complex which locally embeds in S^{2n-1}, does K embed in S^{2n}?
A FIVE SPHERE DECOMPOSITION OF E^{3n-1}

References

2. E. Valle Flores, *Ueber n-dimensionale Komplexe, die im R_{3n+1} absolut selbstverschlungen sind*, Ergebnisse eines Mathematischen Kolloquiums 6 (1933/34), 4–6.

University of California, Los Angeles