SHORTER NOTES

The purpose of this department is to publish very short papers of an unusually elegant and polished character, for which there is no other outlet.

CUP PRODUCT IN PROJECTIVE SPACES

KEE YUEN LAM

ABSTRACT. Cup product in projective spaces is computed by an elementary method.

In two recent algebraic topology texts, [1], [2], the additive cohomology structures of projective spaces are obtained by elementary methods, while cup product is computed by techniques such as the Gysin sequence and the Poincaré duality theorem. We present a computation using basic properties of cup product only.

Think of CP^n as the space of all nonzero complex-coefficient polynomials of the form $P = a_0 + a_1z + \cdots + a_nz^n$ under identifications $P \sim \lambda P$ for any nonzero complex number λ. Let $M = CP^1 \times \cdots \times CP^1$ (n factors). The multiplication of polynomials defines a map $h: M \to CP^n$. If D_1, \cdots, D_n are mutually disjoint discs in CP^1, and $D = D_1 \times \cdots \times D_n \subset M$, then by the fundamental theorem of algebra, h is a homeomorphism of D onto $h(D)$, and $K = h^{-1}(h(D))$ is the disjoint union of all $D_\pi = D_\pi(1) \times \cdots \times D_\pi(n)$, with π ranging through all permutations of $\{1, 2, \cdots, n\}$. Note that, if each $(D_\pi, \partial D_\pi)$ is oriented coherently with M, then $\pi: (D, \partial D) \to (D_\pi, \partial D_\pi)$ preserves orientation.

Using the direct sum decomposition

$$H_{2n}(M, M - K) = \bigoplus_\pi H_{2n}(M, M - D_\pi),$$

and standard excision arguments, it is not hard to see that $h_*: H_{2n}(M) \to H_{2n}(CP^n)$, which is the following composite homomorphism

$$H_{2n}(M) \to H_{2n}(M, M - K) \xrightarrow{h_*} H_{2n}(CP^n, CP^n - h(D)) \xrightarrow{\sim} H_{2n}(CP^n),$$

is multiplication by $\pm n!$.
Let ω denote the generator of $H^*(\mathbb{C}P^n)$. Then

$$h^*(\omega) = \sum_{i=1}^{n} 1 \times \cdots \times \omega \times \cdots \times 1 \in H^2(M);$$

$$h^*(\omega^n) = \left(\sum_{i=1}^{n} 1 \times \cdots \times \omega \times \cdots \times 1 \right)^n = n!(\omega \times \cdots \times \omega).$$

It follows that ω^n generates $H^{2n}(\mathbb{C}P^n)$. Consequently $H^*(\mathbb{C}P^n) = \mathbb{Z}[\omega]/\omega^{n+1}$ as ring.

The ring structure for $H^*(\mathbb{H}P^n)$ follows from naturality via the Hopf fibration $\mathbb{C}P^{2n+1} \to \mathbb{H}P^n$. By the same technique, it also follows that the 2-dim generator of $H^*(\mathbb{R}P^\infty, \mathbb{Z}_2)$ generates a polynomial subring. Finally, it is easy to show [2, p. 151, (24.17)] that if $x \in H^1(\mathbb{R}P^\infty, \mathbb{Z}_2)$ is the 1-dim generator, then $x^2 \neq 0$ in $\mathbb{R}P^2$. Consequently $H^*(\mathbb{R}P^\infty, \mathbb{Z}_2) = \mathbb{Z}_2[x]$ as ring.

References

University of British Columbia