Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

Decomposition numbers of $ p$-solvable groups


Author: Forrest Richen
Journal: Proc. Amer. Math. Soc. 25 (1970), 100-104
MSC: Primary 20.40
DOI: https://doi.org/10.1090/S0002-9939-1970-0254146-2
MathSciNet review: 0254146
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: In the character theory of finite groups one decomposes each ordinary irreducible character $ {\chi _i}$ of a group into an integral linear combination of $ p$-modular irreducible characters $ {\phi _j},{\chi _i} = \sum {{d_{ij}}{\phi _j}} $. The nonnegative integers $ {d_{ij}}$ are called the $ p$-decomposition numbers. Let $ G$ be a $ p$-solvable group whose $ p$-Sylow subgroups are abelian. If $ G/{O_{p'p}}(G)$ is cyclic the $ p$-decomposition numbers are $ \leqq 1$. This condition is far from necessary as any group $ G$ with abelian, normal $ p$-Sylow subgroup $ P$ with $ G/P$ abelian has $ p$-decomposition numbers $ \leqq 1$. A result of Brauer and Nesbitt together with the first result yields the following. A group $ G$ has a normal $ p$-complement and abelian $ p$-Sylow subgroups if and only if each irreducible character of $ G$ is irreducible as a $ p$-modular character.


References [Enhancements On Off] (What's this?)

  • [1] R. Brauer and C. Nesbitt, On the modular characters of groups, Ann. of Math. (2) 42 (1941), 556-590. MR 2, 309. MR 0004042 (2:309c)
  • [2] C. W. Curtis and I. Reiner, Representation theory of finite groups and associative algebras, Pure and Appl. Math., vol. 11, Interscience, New York, 1962. MR 26 #2519. MR 0144979 (26:2519)
  • [3] W. Feit, Characters of finite groups, Benjamin, New York, 1967. MR 36 #2715. MR 0219636 (36:2715)
  • [4] P. Fong, On the characters of $ p$-solvable groups, Trans. Amer. Math. Soc. 98 (1961), 263-284. MR 22 #11052. MR 0120297 (22:11052)
  • [5] P. X. Gallagher, Group characters and normal Hall subgroups, Nagoya Math. J. 21 (1962), 223-230. MR 26 #240. MR 0142671 (26:240)
  • [6] P. Hall and G. Higman, On the $ p$-length of $ p$-soluble groups and reduction theorems for Burnside's problem, Proc. London Math. Soc. (3) 6 (1956), 1-42. MR 17, 344. MR 0072872 (17:344b)
  • [7] M. Osima, On primary decomposable group rings, Proc. Phys.-Math. Soc. Japan (3) 24 (1942), 1-9. MR 7, 373. MR 0015113 (7:373a)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 20.40

Retrieve articles in all journals with MSC: 20.40


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1970-0254146-2
Keywords: $ p$-solvable group, decomposition numbers, $ p$-modular character, ordinary character
Article copyright: © Copyright 1970 American Mathematical Society

American Mathematical Society