Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

Class number in constant extensions of elliptic function fields


Author: James R. C. Leitzel
Journal: Proc. Amer. Math. Soc. 25 (1970), 183-188
MSC: Primary 10.77
DOI: https://doi.org/10.1090/S0002-9939-1970-0255516-9
MathSciNet review: 0255516
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: For $ F/K$ a function field of genus one having the finite field $ K$ as field of constants and $ E$ the constant extension of degree $ n$ we give explicitly the class number of the field $ E$ as a polynomial expression in terms of the class number of $ F$ and the order of the field $ K$. Applications are made to determine the degree of a constant extension $ E$ necessary to have a predetermined prime $ p$ occur as a divisor of the class number of the field $ E$.


References [Enhancements On Off] (What's this?)

  • [1] G. Chrystal, A textbook of algebra. Vol. II, A. and C. Black, Edinburgh, 1889; reprint of 6th ed., Chelsea, New York.
  • [2] M. Eichler, Introduction to the theory of algebraic numbers and functions, Birkhäuser, Basel, 1963; English transl., Pure and Appl. Math., vol. 23, Academic Press, New York, 1966. MR 29 #5821; MR 35 #160. MR 0209258 (35:160)
  • [3] H. Hasse, Zur Theorie der abstrakten elliptischen Funktionenkörper. I, J. Reine Angew. Math. 175 (1936), 55-62.
  • [4] J. Leitzel, Galois cohomology and class number in constant extensions of algebraic function fields, Proc. Amer. Math. Soc. 22 (1969), 206-208. MR 0242799 (39:4126)
  • [5] E. Lucas, Théorie des fonctions numériques simplement pérodiques, Amer. J. Math. 1 (1878), 184-239; 289-321. MR 1505176

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 10.77

Retrieve articles in all journals with MSC: 10.77


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1970-0255516-9
Keywords: Genus one, constant extension, binomial expansions
Article copyright: © Copyright 1970 American Mathematical Society

American Mathematical Society