Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)



On the algebraic independence of symmetric functions

Author: G. K. Haeuslein
Journal: Proc. Amer. Math. Soc. 25 (1970), 179-182
MSC: Primary 12.30; Secondary 20.00
MathSciNet review: 0257042
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: The purpose of this note is to establish a necessary and sufficient condition for the algebraic independence of certain sets of homogeneous symmetric polynomials which is used in 2. to solve a problem proposed by L. Flatto [2].

References [Enhancements On Off] (What's this?)

  • [1] A. Cauchy, Mémoire sur diverses formules relatives à l'algèbre et à la théorie des nombres, C. R. Acad. Sci. Paris 12 (1841), 698-711.
  • [2] L. Flatto, Basic sets of invariants for finite reflection groups, Bull. Amer. Math. Soc. 74 (1968), 730-734. MR 37 #1483. MR 0225892 (37:1483)
  • [3] T. J. L. Bromwich, An introduction to the theory of infinite series, 2nd ed., Macmillan, London, 1926.

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 12.30, 20.00

Retrieve articles in all journals with MSC: 12.30, 20.00

Additional Information

Keywords: Algebraic independence, symmetric polynomials, roots of unity
Article copyright: © Copyright 1970 American Mathematical Society

American Mathematical Society