Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)



The converse of Cauchy's theorem for arbitrary Riemann surfaces

Author: Myron Goldstein
Journal: Proc. Amer. Math. Soc. 25 (1970), 177-178
MSC: Primary 30.45
MathSciNet review: 0257345
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: In this paper, we prove a generalization of the converse of Cauchy's theorem which is valid for arbitrary hyperbolic Riemann surfaces. The tools used are the Kuramochi compactification and the concept of generalized normal component.

References [Enhancements On Off] (What's this?)

  • [1] L. V. Ahlfors and L. Sario, Riemann surfaces, Princeton Math. Series, no. 26, Princeton Univ. Press, Princeton, N. J., 1960. MR 22 #5729. MR 0114911 (22:5729)
  • [2] C. Constantinescu and A. Cornea, Ideale Ränder Riemannscher Flächen, Ergebnisse der Math. und ihrer Grenzgebiete, Band 32, Springer-Verlag, Berlin, 1963. MR 28 #3151. MR 0159935 (28:3151)
  • [3] H. L. Royden, The boundary values of analytic and harmonic functions, Math. Z. 78 (1962), 1-24. MR 25 #2190. MR 0138747 (25:2190)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 30.45

Retrieve articles in all journals with MSC: 30.45

Additional Information

Keywords: Normal component, quasicontinuous extension, analytic differentials, regular point, Kuramochi compactification
Article copyright: © Copyright 1970 American Mathematical Society

American Mathematical Society