Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

The Toeplitz-Hausdorff theorem for linear operators


Author: Karl Gustafson
Journal: Proc. Amer. Math. Soc. 25 (1970), 203-204
MSC: Primary 47.10; Secondary 46.00
DOI: https://doi.org/10.1090/S0002-9939-1970-0262849-9
MathSciNet review: 0262849
Full-text PDF Free Access

References | Similar Articles | Additional Information

References [Enhancements On Off] (What's this?)

  • [1] O. Toeplitz, Das algebraische Analogon zu einem Satz von Fejér, Math. Z. 2 (1918), 187-197. MR 1544315
  • [2] F. Hausdorff, Der Wertvorrat einer Bilinearform, Math. Z. 3 (1919), 314-316. MR 1544350
  • [3] M. H. Stone, Linear transformations in Hilbert space and their applications to analysis, Amer. Math. Soc. Colloq. Publ., vol. 15, Amer. Math. Soc., Providence, R. I., 1932, pp. 130-133. MR 1451877 (99k:47001)
  • [4] P. R. Halmos, A Hilbert space problem book, Van Nostrand, Princeton, N. J., 1967, pp. 317-318. MR 34 #8178. MR 0208368 (34:8178)
  • [5] W. F. Donoghue, On the numerical range of a bounded operator, Michigan Math. J. 4 (1957), 261-263. MR 20 #2622. MR 0096127 (20:2622)
  • [6] R. Raghavendran, Toeplitz-Hausdorff theorem on numerical ranges, Proc. Amer. Math. Soc. 20 (1969), 284-285. MR 38 #1509. MR 0233186 (38:1509)
  • [7] K. Gustafson, A min-max theorem, Notices Amer. Math. Soc. 15 (1968), 799. Abstract #68T-B38.

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 47.10, 46.00

Retrieve articles in all journals with MSC: 47.10, 46.00


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1970-0262849-9
Keywords: Numerical range, Hilbert space, unbounded operator
Article copyright: © Copyright 1970 American Mathematical Society

American Mathematical Society