Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

Minimal coefficients in Hölder conditions in the Wiener space


Author: J. Yeh
Journal: Proc. Amer. Math. Soc. 25 (1970), 385-390
MSC: Primary 28.46
DOI: https://doi.org/10.1090/S0002-9939-1970-0255762-4
MathSciNet review: 0255762
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: For almost every $ x$ in the Wiener space $ {C_w}$, the Hölder condition $ \vert x(t') - x(t'')\vert \leqq h\vert t' - t''{\vert^\alpha }$ holds for some $ h > 0$ when $ \alpha \in (0,\tfrac{1} {2})$. Let $ {\phi _\alpha }[x]$ be the infimum of all $ h > 0$ for fixed $ x$ and $ \alpha $. In the present paper we prove that every positive power of $ {\phi _\alpha }[x]$ is Wiener integrable over $ {C_w}$ and give an estimate for the Wiener integral.


References [Enhancements On Off] (What's this?)


Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 28.46

Retrieve articles in all journals with MSC: 28.46


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1970-0255762-4
Keywords: Wiener measure, Brownian motion, continuity of sample paths, Hölder condition, essential boundedness
Article copyright: © Copyright 1970 American Mathematical Society

American Mathematical Society