Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

Coordinatization of orthocomplemented and orthomodular posets


Authors: S. P. Gudder and R. H. Schelp
Journal: Proc. Amer. Math. Soc. 25 (1970), 229-237
MSC: Primary 06.35
DOI: https://doi.org/10.1090/S0002-9939-1970-0258690-3
MathSciNet review: 0258690
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Generalizations of Baer $ ^{\ast}$-semigroups called partial Baer $ ^{\ast}$-semigroups and OM-partial Baer $ ^{\ast}$-semigroups are introduced. It is shown that the set of closed projections of a (OM) partial Baer $ ^{\ast}$-semigroup form an (orthomodular) orthocomplemented poset. Conversely (orthomodular) orthocomplemented posets are coordinatized by (OM) partial Baer $ ^{\ast}$-semigroups. It is shown that these coordinatizing semigroups are minimal.


References [Enhancements On Off] (What's this?)

  • [1] D. J. Foulis, Baer $ ^{\ast}$-semigroups, Proc. Amer. Math. Soc. 11 (1960), 648-654. MR 23 #A3105. MR 0125808 (23:A3105)
  • [2] -, Lecture notes on orthomodular lattices, University of Massachusetts, Amherst, Mass.
  • [3] S. P. Gudder, ``Axiomatic quantum mechanics and generalized probability theory,'' in Probabilistic methods in applied mathematics. Vol. II, A. Bharucha-Reid (Editor), Academic Press, New York, 1970. MR 0266552 (42:1455)
  • [4] V. S. Varadarajan, Probability in physics and a theorem on simultaneous observability, Comm. Pure Appl. Math. 15 (1962), 189-217; Erratum: Comm. Pure Appl. Math. 18 (1965), 757. MR 29 #917; MR 32 #8722. MR 0163616 (29:917)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 06.35

Retrieve articles in all journals with MSC: 06.35


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1970-0258690-3
Keywords: Partially ordered sets, orthocomplemented posets, orthomodular posets, Baer $ ^{\ast}$-semigroups, coordinatization theorems
Article copyright: © Copyright 1970 American Mathematical Society

American Mathematical Society