Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

A theorem on $ T$-fractions corresponding to a rational function


Author: Kari Hag
Journal: Proc. Amer. Math. Soc. 25 (1970), 247-253
MSC: Primary 30.25
DOI: https://doi.org/10.1090/S0002-9939-1970-0259081-1
MathSciNet review: 0259081
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We prove that a limitärperiodisch $ T$-fraction, which corresponds to a rational function, has the property that $ {d_n} \to - 1$.


References [Enhancements On Off] (What's this?)

  • [1] W. J. Thron, Some properties of continued fractions $ 1 + {d_0}z + K(z/(1 + {d_n}z))$, Bull. Amer. Math. Soc. 54 (1948), 206-218. MR 9, 508. MR 0024528 (9:508c)
  • [2] O. Perron, Die Lehre von den Kettenbrïchen. Band II. Analytisch-funktion-entheoretische Kettenbrüche, Teubner Verlagsgesellschaft, Stuttgart, 1957. MR 19, 25. MR 0085349 (19:25c)
  • [3] W. Leighton and W. T. Scott, A general continued fraction expansion, Bull. Amer. Math. Soc. 45 (1939), 596-605. MR 1, 7. MR 0000041 (1:7f)
  • [4] A. Magnus, Certain continued fractions associated with the Padé table, Math. Z. 78 (1962), 361-374. MR 27 #272. MR 0150271 (27:272)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 30.25

Retrieve articles in all journals with MSC: 30.25


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1970-0259081-1
Keywords: $ T$-fraction expansion, limitärperiodisch $ T$-fraction, continued fractions, power series
Article copyright: © Copyright 1970 American Mathematical Society

American Mathematical Society