Bases of type and reflexivity of Banach spaces

Author:
J. R. Holub

Journal:
Proc. Amer. Math. Soc. **25** (1970), 357-362

MSC:
Primary 46.10

MathSciNet review:
0259567

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: The purpose of this paper is to give a number of characterizations of reflexive Banach spaces having Schauder bases.

We show that a Banach space with a basis such that is contained in either or in has a basis of type . It follows that a Banach space with an unconditional basis is reflexive if and only if no basis is of type . It is also shown that a Banach space with a basis is reflexive if and only if every basis converges weakly to zero.

**[1]**C. Bessaga and A. Pełczyński,*On bases and unconditional convergence of series in Banach spaces*, Studia Math.**17**(1958), 151–164. MR**0115069****[2]**C. Bessaga and A. Pełczyński,*A generalization of results of R. C. James concerning absolute bases in Banach spaces*, Studia Math.**17**(1958), 165–174. MR**0115071****[3]**Ciprian Foiaş and Ivan Singer,*On bases in 𝐶([𝑂,1]) and 𝐿¹([0,1])*, Rev. Roumaine Math. Pures Appl.**10**(1965), 931–960. MR**0206691****[4]**M. M. Grinblyum,*On the representation of a space of type 𝐵 in the form of a direct sum of subspaces*, Doklady Akad. Nauk SSSR (N.S.)**70**(1950), 749–752 (Russian). MR**0033977****[5]**J. R. Holub,*Some problems concerning bases in Banach spaces*, Proc. Amer. Math. Soc.**23**(1969), 521–525. MR**0250029**, 10.1090/S0002-9939-1969-0250029-4**[6]**Robert C. James,*Bases and reflexivity of Banach spaces*, Ann. of Math. (2)**52**(1950), 518–527. MR**0039915****[7]**S. Karlin,*Bases in Banach spaces*, Duke Math. J.**15**(1948), 971–985. MR**0029103****[8]**A. Pełczyński and I. Singer,*On non-equivalent bases and conditional bases in Banach spaces*, Studia Math.**25**(1964/1965), 5–25. MR**0179583****[9]**J. R. Retherford,*Shrinking bases in Banach spaces*, Amer. Math. Monthly**73**(1966), 841–846. MR**0201954****[10]**I. Singer,*Basic sequences and reflexivity of Banach spaces*, Studia Math.**21**(1961/1962), 351–369. MR**0146635****[11]**M. Zippin,*A remark on bases and reflexivity in Banach spaces*, Israel J. Math.**6**(1968), 74–79. MR**0236677**

Retrieve articles in *Proceedings of the American Mathematical Society*
with MSC:
46.10

Retrieve articles in all journals with MSC: 46.10

Additional Information

DOI:
https://doi.org/10.1090/S0002-9939-1970-0259567-X

Keywords:
Schauder basis,
basic sequence,
basis of type ,
reflexive Banach space,
unconditional basis,
basis of type ,
weak convergence of bases

Article copyright:
© Copyright 1970
American Mathematical Society