Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

Bases of type $ P$ and reflexivity of Banach spaces


Author: J. R. Holub
Journal: Proc. Amer. Math. Soc. 25 (1970), 357-362
MSC: Primary 46.10
DOI: https://doi.org/10.1090/S0002-9939-1970-0259567-X
MathSciNet review: 0259567
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: The purpose of this paper is to give a number of characterizations of reflexive Banach spaces having Schauder bases.

We show that a Banach space $ X$ with a basis such that $ {c_0}$ is contained in either $ X$ or in $ {X^{\ast}}$ has a basis of type $ P$. It follows that a Banach space with an unconditional basis is reflexive if and only if no basis is of type $ P$. It is also shown that a Banach space with a basis is reflexive if and only if every basis converges weakly to zero.


References [Enhancements On Off] (What's this?)

  • [1] C. Bessaga and A. Pełczyński, On bases and unconditional convergence of series in Banach spaces, Studia Math. 17 (1958), 151-164. MR 22 #5872. MR 0115069 (22:5872)
  • [2] -, A generalization of results of R. C. James concerning absolute bases in Banach spaces, Studia Math. 17 (1958), 165-174. MR 22 #5874. MR 0115071 (22:5874)
  • [3] C. Foiaş and I. Singer, On bases in $ C([0,1])$ and $ {L^1}([0,1])$, Rev. Roumaine Math. Pures Appl. 10 (1965), 931-960. MR 34 #6509. MR 0206691 (34:6509)
  • [4] M. M. Grinblyum, On the representation of a space of type $ B$ in the form of a direct sum of subspaces, Dokl. Akad. Nauk SSSR 70 (1950), 749-752. (Russian) MR 11, 525. MR 0033977 (11:525c)
  • [5] J. R. Holub, Some problems concerning bases in Banach spaces, Proc. Amer. Math. Soc. 23 (1969), 521-525. MR 0250029 (40:3270)
  • [6] R. C. James, Bases and reflexivity of Banach spaces, Ann. of Math. (2) 52 (1950), 518-527. MR 12, 616. MR 0039915 (12:616b)
  • [7] S. Karlin, Bases in Banach spaces, Duke Math. J. 15 (1948), 971-985. MR 10, 548. MR 0029103 (10:548c)
  • [8] A. Pełczyński and I. Singer, On non-equivalent bases and conditional bases in Banach spaces, Studia Math. 25 (1964/65), 5-25. MR 31 #3831. MR 0179583 (31:3831)
  • [9] J. R. Retherford, Shrinking bases in Banach spaces, Amer. Math. Monthly 73 (1966), 841-846. MR 34 #1831. MR 0201954 (34:1831)
  • [10] I. Singer, Basic sequences and reflexivity of Banach spaces, Studia Math. 21 (1961/62), 351-369. MR 26 #4155. MR 0146635 (26:4155)
  • [11] M. Zippin, A remark on bases and reflexivity in Banach spaces, Israel J. Math. 6 (1968), 74-79. MR 38 #4972. MR 0236677 (38:4972)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 46.10

Retrieve articles in all journals with MSC: 46.10


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1970-0259567-X
Keywords: Schauder basis, basic sequence, basis of type $ P$, reflexive Banach space, unconditional basis, basis of type $ w{c_0}$, weak convergence of bases
Article copyright: © Copyright 1970 American Mathematical Society

American Mathematical Society