CHARACTERS ON SINGLY GENERATED
C*-ALGEBRAS

JOHN BUNCE

Abstract. In this note we consider the question of what elements δ in the spectrum of a bounded operator A on Hilbert space have the property that there is a multiplicative linear functional ϕ on the C*-algebra generated by A and I whose value at A is δ. If A is hyponormal then there is a character ϕ on the C*-algebra generated by A and I such that $\phi(A) = \delta$ if and only if δ is in the approximate point spectrum of A. We use this to prove a structure theorem for the C*-algebra generated by a hyponormal operator. We conclude by proving that any pure state on a Type I C*-algebra is multiplicative on some maximal abelian C*-subalgebra.

Let A be an operator in $B(H)$, the set of bounded operators on a Hilbert space H. Let $C^*(A)$ be the C*-subalgebra of $B(H)$ generated by A and the identity. By a character on a C*-algebra we mean a multiplicative linear functional. We will investigate the existence of characters on $C^*(A)$. Let $\text{sp}(A)$ denote the spectrum of A. The author began this research after learning that William Arveson had proved the following: If $\delta \in \text{sp}(A)$ is such that $\|A\| = |\delta|$, then there is a character ϕ on $C^*(A)$ such that $\phi(A) = \delta$. We independently prove this result at the end of this note. We denote by $a(A)$ the approximate point spectrum of A; i.e., $a(A)$ is the set of scalars δ for which there is a sequence (x_n) of unit vectors in H such that $(A - \delta I)x_n$ converges to zero in norm. Let $p(A)$ denote the set of eigenvalues of A. See [6, §31] for facts about spectra.

Proposition 1. Let $A \in B(H)$. Then

$$a(A) = \{ \delta \in \text{sp}(A) : C^*(A)(A - \delta I) \neq C^*(A) \}.$$

Proof. First let $\delta \in a(A)$, then $A - \delta I$ is not bounded below. If I were in $C^*(A)(A - \delta I)$, then we would have $I = D(A - \delta I)$ for some
\[D \in C^*(A), \text{ and for } x \in H, \|x\| \leq \|D\| \|(A - \delta I)x\|; \text{ hence } A - \delta I \text{ would be bounded below. Thus } I \in C^*(A)(A - \delta I). \text{ Conversely, suppose } \delta \text{ is such that } C^*(A)(A - \delta I) \neq C^*(A). \text{ Then there is a pure state } \phi \text{ on } C^*(A) \text{ such that } C^*(A)(A - \delta I) \text{ is contained in } K(\phi), \text{ where } K(\phi) = \{ B \in C^*(A) : \phi(B^*B) = 0 \}, [3, 2.9.5]. \text{ If we had } \delta \notin a(A), \text{ then } A - \delta I \text{ would be bounded below and there would exist } m > 0 \text{ such that } m^2I \leq (A - \delta I)^*(A - \delta I). \text{ But } \phi((A - \delta I)^*(A - \delta I)) = 0, \text{ so } m^2\phi(I) = 0, \text{ but this is a contradiction. Hence } \delta \in a(A). \]

The next two corollaries say roughly that to compute the approximate point spectrum of an element we can use any \(C^* \)-algebra containing the element.

Corollary 2. Let \(\delta \in \text{sp}(A) \). Then if \(I \in B(H)(A - \delta I) \), we also have \(I \in C^*(A)(A - \delta I) \).

Proof. If \(I = D(A - \delta I) \) for some \(D \in B(H) \), then as above \((A - \delta I) \) is bounded below so \(\delta \notin a(A) \), and by the proposition \(C^*(A)(A - \delta I) = C^*(A) \).

Corollary 3. Let \(A \in B(H) \). Then

\[a(A) = \{ \delta \in \text{sp}(A) : B(H)(A - \delta I) \neq B(H) \}. \]

For facts about irreducible representations see [3, §2].

Corollary 4. If \(\delta \in a(A) \), then there exists a pure state \(\phi \) on \(C^*(A) \) such that \(\pi_\phi(A)\xi_\phi = \delta \xi_\phi \), where \(\pi_\phi \) is the irreducible representation induced by \(\phi \), with canonical cyclic vector \(\xi_\phi \).

Proof. If \(\delta \in a(A) \), then \(C^*(A)(A - \delta I) \neq C^*(A) \); so there is a pure state \(\phi \) on \(C^*(A) \) such that \(C^*(A)(A - \delta I) \subset K(\phi) \). Then \(A + K(\phi) = \delta I + K(\phi) \), so \(\pi_\phi(A)\xi_\phi = \delta \xi_\phi \).

Corollary 5. If \(\delta \in a(A) \), then \(\delta \in a(\pi(A)) \) for any representation \(\pi \) of \(C^*(A) \) on a Hilbert space. (We assume \(\pi(I) = I \).)

Proof. If \(\delta \in a(A) \), then \(I = D(A - \delta I) \) for some \(D \in C^*(A) \), so \(\pi(I) = I = \pi(D)(\pi(A) - \delta I) \). Hence \(\delta \in a(\pi(A)) \).

For facts about the universal representation see [3, 2.7.8].

Corollary 6. Let \(\pi_0 : C^*(A) \to B(H_0) \) be the universal representation of \(C^*(A) \). Then \(a(A) = p(\pi_0(A)) = a(\pi_0(A)) \) and \(a(A^*) = p(\pi_0(A^*)) = a(\pi_0(A^*)) \).

Proof. First note that by Proposition 1, \(a(A) \) depends only on \(C^*(A) \) and hence \(a(A) = a(\pi_0(A)) \). But by Corollary 4, \(a(A) \subset p(\pi_0(A)) \).
CHARACTERS ON SINGLY GENERATED C*-ALGEBRAS

\[a(\pi_0(A)) = a(A). \] So \(a(A) = \rho(\pi_0(A)) = a(\pi_0(A)). \) Since \(C^*(A) = C^*(A^*) \), we also have \(a(A^*) = \rho(\pi_0(A^*)) = a(\pi_0(A^*)). \)

The conclusion of Corollary 6 holds if we take for \(\pi_0 \) the atomic representation of \(C^*(A) \); i.e., the direct sum of all irreducible representations [5, p. 388].

Proposition 7. Let \(A \in B(H) \) and \(\delta \in \text{sp}(A) \). Then there is a pure state \(\phi \) on \(C^*(A) \) such that \(\phi(A) = \delta. \)

Proof. First suppose \(\delta \in a(A) \) and let \(\phi \) be a pure state on \(C^*(A) \) such that \(C^*(A)(A - \delta I) \subseteq K(\phi) \). Then \(\phi(A) = \delta. \) If \(\delta \notin a(A) \), then \(A - \delta I \) does not have dense range and \(A* - \delta I \) is not one-to-one. So \(\delta \notin a(A^*) \) and as above there is a pure state \(\phi \) on \(C^*(A) \) such that \(\phi(A^*) = \delta \), or \(\phi(A) = \delta. \)

Proposition 8. If \(A \in B(H) \) and \(\phi \) is a character on \(C^*(A) \), then \(\phi(A) \in a(A). \)

Proof. Clearly \(A - \phi(A)I \subseteq \phi^{-1}(0) \), which is a proper two-sided ideal of \(C^*(A) \). So \(\phi(A) \in \text{sp}(A) \). Also \(C^*(A)(A - \phi(A)I) \subseteq \phi^{-1}(0) \neq C^*(A) \), so by Proposition 1, \(\phi(A) \in a(A). \)

Proposition 9. Let \(A \in B(H) \) and let \(\delta \in a(A) \) be such that \((A - \delta I) \cdot (A^* - \bar{\delta}I) \subseteq N_2(A^* - \bar{\delta}I)(A - \delta I) \) for some \(N > 0 \). Then there exists a character \(\phi \) on \(C^*(A) \) such that \(\phi(A) = \delta. \)

Proof. By the Radon-Nikodým theorem for operators [4], there exists an operator \(D \in B(H) \) such that \(A - \delta I = (A^* - \bar{\delta}I)D \), or \(A^* - \bar{\delta}I = D^*(A - \delta I) \). Hence \(B(H)(A^* - \bar{\delta}I) \subseteq B(H)(A - \delta I) \subseteq K(\phi) \). Then for all \(B \in B(H) \) we have \(\phi(BA^*) = \phi(B)\bar{\delta} = \phi(B)\phi(A^*) \) and \(\phi(BA) = \phi(B)\phi(A) \). Hence if \(M(A, A^*) \) is any monomial in \(A \) and \(A^* \), we have that \(\phi(M(A, A^*)) = M(\phi(A), \phi(A^*)) \). Hence \(\phi \) is a character on \(C^*(A) \) and \(\phi(A) = \delta. \)

An operator \(A \) on \(H \) is called *hyponormal* if \(AA^* \leq A^*A \). If \(A \) is hyponormal, then \(A - \delta I \) is also hyponormal for all scalars \(\delta \). Then as an immediate corollary of Proposition 9 we have

Corollary 10. Let \(A \in B(H) \) be hyponormal. Then for all \(\delta \in a(A) \), there exists a character \(\phi \) on \(C^*(A) \) such that \(\phi(A) = \delta. \)

Corollary 11. Let \(A \in B(H) \) be hyponormal. Let \(S \) be the set of all nonzero characters on \(C^*(A) \). Let \(I = \cap \{ \phi^{-1}(0) : \phi \in S \} \). Then \(C^*(A)/I \) is isomorphic to the \(C^* \)-algebra of continuous complex-valued functions on \(a(A) \).
Proof. By Corollary 10, \(S \) is nonempty. So \(I \) is a closed two-sided ideal, and \(C^*(A)/I \) is a \(C^* \)-algebra with identity which is clearly commutative. So \(C^*(A)/I \) is isomorphic to \(C(X) \) for some compact Hausdorff space \(X \). But \(C^*(A)/I \) is singly generated by the normal element \(A + I \), hence \(X = \text{spec}(A + I) = \{ \delta \in \phi : \phi \text{ is a character of } C^*(A)/I \} \). Let \(\pi : C^*(A) \rightarrow C^*(A)/I \) be the natural projection. Then clearly the map \(\phi \rightarrow \phi \circ \pi \) is a bijection between the set of characters on \(C^*(A)/I \) and the set \(S \) of characters on \(C^*(A) \). So \(X = \{ \phi(A) : \phi \in S \} \). Then by Corollary 10, \(a(A) \subseteq X \) and by Proposition 8, \(X \subseteq a(A) \). So \(X = a(A) \).

In certain cases, Corollary 10 may be used to compute the approximate point spectrum of an operator. For example, consider the discrete Cesàro operator on \(l^2 \) [2], \(C_0 \), given by

\[
(C_0 x)(n) = 1/(n + 1)(x_0 + x_1 + \cdots + x_n), \quad \text{for } n = 0, 1, 2, \ldots ,
\]

where \(x = (x_0, x_1, x_2, \cdots) \) is in \(l^2 \). Brown, Halmos, and Shields [2] proved that \(\|C_0\| = 2 \), \(\text{spec}(C_0) = \{ \delta : |1 - \delta| \leq 1 \} \), the point spectrum of \(C_0 \) is empty, and \(C_0 \) is hyponormal. Computing the approximate point spectrum of \(C_0 \) directly seems somewhat difficult, but using Corollary 10 we can show that \(a(C_0) = \{ \delta : |1 - \delta| = 1 \} \). If \(|1 - \delta| = 1 \), then \(\delta \) is in the boundary of \(\text{spec}(C_0) \), so \(\delta \in a(C_0) \) [7, Problem 63]. Conversely let \(\delta \in a(C_0) \), then there is a character \(\phi \) on \(C^*(C_0) \) such that \(\phi(C_0) = \delta \). Now it is known and easily shown that \(C_0 + C_0^* - C_0 C_0^* = D_0 \) is a diagonal operator with diagonal 1, 1/2, 1/3, \ldots and is hence compact. Now if an operator \(A \) commutes with \(C_0 \) and \(C_0^* \), then \(A \) commutes with \(D_0 \) and is thus a diagonal operator. Also, it is easily seen that the only diagonal operator commuting with \(C_0 \) is a scalar, so \(A \) is a scalar, and \(C_0 \) is hence irreducible. Thus by [3, 4.1.10] \(C^*(C_0) \) contains the compact operators on \(l^2 \). But then \(\phi \) is a character on the simple \(C^* \)-algebra of compact operators on \(l^2 \), so \(\phi \) vanishes on the compacts. Thus

\[
\phi(C_0) + \overline{\phi(C_0)} - |\phi(C_0)|^2 = \phi(D_0) = 0.
\]

If \(\phi(C_0) \) has real part \(a \) and imaginary part \(b \), this becomes \(2a - a^2 - b^2 = 0 \), or \((a - 1)^2 + b^2 = 1 \). Hence \(\phi(C_0) = \delta \) is on the circle of radius 1 and center \((1, 0) \), so \(|1 - \delta| = 1 \). So \(a(C_0) = \{ \delta : |1 - \delta| = 1 \} \).

We remark that the converse of Proposition 9 is not true: Let \((e_n)^\infty \) be the canonical orthonormal basis in \(l^2 \) and define a weighted shift \(D \in B(l^2) \) by \(D e_n = \delta_n e_{n+1} \), where \(\delta_{2n} = (1/2)^{2n} \) for \(n \geq 0 \) and \(\delta_{2n+1} = (1/3)^{2n+1} \) for \(n \geq 0 \). Then \(D^*(x_0, x_1, \cdots) = (\delta_0 x_1, \delta_1 x_2, \delta_2 x_3, \cdots) \) and \(DD^*(x_0, x_1, \cdots) = (0, \delta_0^2 x_1, \delta_1^2 x_2, \cdots) \), \(D^* D(x_0, x_1, \cdots) = \cdots \)
(δ^j_0 x_0, δ^j_1 x_1, \ldots). Suppose there existed an \(N > 0 \) such that \(DD^* \leq N^2 D^* D \). Then \(\delta^j_0 \leq N^2 \delta^j_{n+1} \) for all \(j \geq 0 \). But \(\frac{\delta^j_n}{\delta^j_{n+1}} = (3/2)^{2n} 3 \), which is unbounded. So there does not exist \(N > 0 \) such that \(DD^* \leq N^2 D^* D \). If \(D^* D \leq N^2 D D^* \) then \(\| D x \| \leq N \| D^* x \| \) for all \(x \in l^2 \). But \(D^* e_0 = 0 \) while \(D e_0 \neq 0 \). So there does not exist \(N > 0 \) such that \(D^* D \leq N^2 D D^* \). Now \(DD^* \) is clearly compact, so \(D \) is compact. By [7, Problem 151] \(D \) is irreducible, so by [3, 4.1.10] \(C^*(D) \) is just the scalars plus the compacts. The projection \(\pi \) of \(C^*(D) \) onto \(C^*(D) \) modulo the compacts is then a character and \(\pi(D) = 0 \). This shows that the converse of Proposition 9 is true for neither \(D \) nor \(D^* \).

To prove Arveson’s result (Proposition 13 and Corollary 14) we need the following lemma [9, p. 8].

Lemma 12. If \(T \in B(H) \) is such that \(\| T \| \leq 1 \) and \(x \in H \) is such that \(Tx = x \), then \(T^* x = x \).

Proof. Since \(Tx = x \), we have \((x, T^* x) = (Tx, x) = \| x \|^2 \). Hence

\[
\| x - T^* x \|^2 = \| x \|^2 - (x, T^* x) - (T^* x, x) + \| T^* x \|^2 \\
= \| x \|^2 - 2 \text{ Re} (x, T^* x) + \| T^* x \|^2 = \| x \|^2 - 2 \| x \|^2 + \| T^* x \|^2 \\
= \| T^* x \|^2 - \| x \|^2 \leq 0.
\]

So \(x = T^* x \).

Proposition 13. Let \(A \in B(H) \) be such that \(\| A \| \leq 1 \) and suppose \(1 \in \text{sp}(A) \). Then there exists a character \(\phi \) on \(C^*(A) \) such that \(\phi(A) = 1 \).

Proof. Since \(1 \) is in the boundary of \(\text{sp}(A) \), we have \(1 \in a(A) \). Let \(\pi_0 : C^*(A) \to B(H_0) \) be the universal representation. Then by Corollary 6 we have \(a(A) = \rho(\pi_0(A)) = a(\pi_0(A)) \). Hence \(1 \in \rho(\pi_0(A)) \) and there is an \(x \in H_0 \) such that \(\pi_0(A)x = x \). Then by the lemma \(\pi_0(A^*)x = x \). Then if \(\omega_x \) is the vector state associated with \(x \), we have for \(M(\pi_0(A), \pi_0(A^*)) \) any monomial in \(\pi_0(A) \) and \(\pi_0(A^*) \),

\[
\omega_x(M(\pi_0(A), \pi_0(A^*))) = M(1, 1).
\]

Hence \(\omega_x \) is a character on \(\pi_0(C^*(A)) \), so \(\omega_x \circ \pi_0 \) is a character on \(C^*(A) \) and \(\omega_x \circ \pi_0(A) = \| x \|^2 = 1 \).

Corollary 14. Let \(A \) be a nonzero element of \(B(H) \) and suppose there is a \(\delta \in \text{sp}(A) \) such that \(\| A \| = | \delta | \). Then there is a character \(\phi \) on \(C^*(A) \) such that \(\phi(A) = \delta \).

Proof. Consider \(B = \delta^{-1} A \) and use Proposition 13.

We briefly consider an unrelated \(C^* \)-algebra problem first raised by Kadison and Singer [8]. Let \(\phi \) be a pure state on a \(C^* \)-algebra \(A \).
Is \(\phi \) multiplicative on some maximal abelian subalgebra of \(A \)? Aarnes and Kadison [1] have proved this for separable \(C^* \)-algebras. Another result along this line is

Proposition 15. Let \(A \) be a \(C^* \)-algebra with identity such that every irreducible representation of \(A \) contains the compact operators. If \(\phi \) is a pure state of \(A \), then there is a maximal abelian \(C^* \)-subalgebra \(B \) of \(A \) such that \(\phi \mid B \) is multiplicative.

Proof. Let \(A_0 = K(\phi) \cap K(\phi)^* = \{ a \in A : \phi(a^*a) = \phi(aa^*) = 0 \} \). Then \(A_0 \) and \(\pi_\phi(A_0) \) are \(C^* \)-algebras, where \(\pi_\phi \) is the irreducible representation induced by \(\phi \). We have \(\pi_\phi(A_0) = \{ \pi_\phi(a) : \pi_\phi(a) \xi_\phi = \pi_\phi(a^*) \xi_\phi = 0, a \in A \} \). Let \([\xi_\phi] \) be the one-dimensional subspace spanned by \(\xi_\phi \). If \([\xi_\phi] = H_\phi \), then \(\pi_\phi \) is one-dimensional, \(\phi \) is multiplicative and hence we may take \(B \) to be any maximal abelian \(C^* \)-subalgebra of \(A \). So we may assume \([\xi_\phi] \perp \perp 0 \). Let \(x \in B(H_\phi) \) be the projection onto \([\xi_\phi] \perp \perp \). Then \(1 - x = 0 \) is a compact operator on \(H_\phi \), and hence by hypothesis \(1 - x \) is in \(\pi_\phi(A) \). So \(x \in \pi_\phi(A) \) and \(x = \pi_\phi(a_0) \) for some \(a_0 \in A \), and since \(\pi_\phi((a_0 + a_0^*)/2) = x \) we may assume that \(a_0 \) is selfadjoint. Then \(\pi_\phi(a_0) \xi_\phi = 0 \), so \(a_0 \in A_0 \). Then let \(B_0 \) be a maximal abelian \(C^* \)-subalgebra of \(A_0 \) containing \(a_0 \). Let \(B = B_0 + Ce \), where \(e \) is the identity, then \(B \) is a \(C^* \)-subalgebra of \(A \) and \(\phi \) is multiplicative on \(B \) since \(\phi \mid B_0 = 0 \). We show that \(B \) is maximal abelian in \(A \). Let \(d \) be a selfadjoint element of \(A \) which commutes with \(B \). Then \(\pi_\phi(d) \) commutes with \(\pi_\phi(a_0) \). So \([\xi_\phi] \perp \perp \) reduces \(\pi_\phi(d) \) and \(\pi_\phi(d)([\xi_\phi]) \subset [\xi_\phi] \). So \(\pi_\phi(d) \xi_\phi = \delta \xi_\phi \) for some scalar \(\delta \), and \(\delta \) is real since \(d \) is selfadjoint. Then \(\pi_\phi(d - \delta e) \xi_\phi = 0 \), so \(d - \delta e \in A_0 \). But \(d - \delta e \) commutes with \(B_0 \), so \(d - \delta e \in B_0 \) since \(B_0 \) is maximal abelian in \(A_0 \), and hence \(d \in B \). Thus \(B \) is maximal abelian in \(A \).

Added in proof. The conclusion of Proposition 15 remains true if \(\phi \) is a pure state on any \(C^* \)-algebra \(A \) such that the associated representation \(\pi_\phi \) is nonzero on the unique largest postliminal ideal of \(A \) (see [3, 4.3.6] for the definition of this ideal).

References

University of Pennsylvania, Philadelphia, Pennsylvania 19104