On
Author:
William A. Webb
Journal:
Proc. Amer. Math. Soc. 25 (1970), 578-584
MSC:
Primary 10.10
DOI:
https://doi.org/10.1090/S0002-9939-1970-0256984-9
MathSciNet review:
0256984
Full-text PDF
Abstract | References | Similar Articles | Additional Information
Abstract: It is shown that the number of positive integers for which
is not solvable in positive integers, is less than a constant times
.
- [1] Alexander Aigner, Brüche als Summe von Stammbrüchen, J. Reine Angew. Math. 214/215 (1964), 174-179. MR 28 #3969. MR 0160758 (28:3969)
- [2]
L. Bernstein, Zur Lösung der diophantischen Gleichung
, insbesondere im Fall
, J. Reine Angew. Math. 211 (1962), 1-10. MR 26 #77. MR 0142508 (26:77)
- [3] H. Halberstam and K. F. Roth, Sequences, Vol. 1, Clarendon Press, Oxford, 1966. MR 35 #1565. MR 0210679 (35:1565)
- [4] Karl Prachar, Primzahlverteilung, Springer-Verlag, Berlin and New York, 1957. MR 19, 393. MR 0087685 (19:393b)
- [5] B. M. Stewart, Theory of numbers, 2nd ed., Macmillan, New York, 1964. MR 37 #6232. MR 0230672 (37:6232)
- [6] B. M. Stewart and W. A. Webb, Sums of fractions with bounded numerators, Canad. J. Math. 18 (1966), 999-1003. MR 33 #7297. MR 0199148 (33:7297)
Retrieve articles in Proceedings of the American Mathematical Society with MSC: 10.10
Retrieve articles in all journals with MSC: 10.10
Additional Information
DOI:
https://doi.org/10.1090/S0002-9939-1970-0256984-9
Keywords:
Diophantine equation,
divisors,
residue classes,
Selberg's sieve
Article copyright:
© Copyright 1970
American Mathematical Society