Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

Inequalities for a symmetric elliptic integral


Author: B. C. Carlson
Journal: Proc. Amer. Math. Soc. 25 (1970), 698-703
MSC: Primary 33.19
DOI: https://doi.org/10.1090/S0002-9939-1970-0257412-X
MathSciNet review: 0257412
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Inequalities are found for an incomplete elliptic integral of the first kind which represents the reciprocal of the capacity of an ellipsoid with semiaxes $ x,\;y,\;z$. One sequence of symmetric algebraic functions of $ x,\;y,\;z$ converges to the value of the integral from below and two from above. Among the elements of these sequences are upper and lower approximations due to Pólya and Szegö.


References [Enhancements On Off] (What's this?)

  • [1] G. Pólya and G. Szegö, Inequalities for the capacity of a condenser, Amer. J. Math. 67 (1945), 1-32. MR 6, 227. MR 0011871 (6:227e)
  • [2] B. C. Carlson, Normal elliptic integrals of the first and second kinds, Duke Math. J. 31 (1964), 405-419. MR 29 #1366. MR 0164067 (29:1366)
  • [3] G. Pólya, Arch. Math. und Physik (3) 26 (1917), 65.
  • [4] G. Szegö, Arch. Math. und Physik (3) 28 (1920), 81-82.
  • [5] H. Poincaré, Sur un théorème de M. Liapounoff, relalif à l'équilibre d'une masse fluide, C. R. Acad. Sci. Paris 104 (1887), 622-625.
  • [6] D. G. Zill and B. C. Carlson, Symmetric elliptic integrals of the third kind, Math. Comp. 24 (1970) 199-214. MR 0262553 (41:7159)
  • [7] B. C. Carlson, Inequality of mixed arithmetic and geometric means, SIAM Rev. (to appear).
  • [8] -, Some inequalities for hypergeometric functions, Proc. Amer. Math. Soc. 17 (1966), 32-39. MR 32 #5935. MR 0188497 (32:5935)
  • [9] -, Some series and bounds for incomplete elliptic integrals, J. Math. and Phys. 40 (1961), 125-134. MR 24 #A259. MR 0130398 (24:A259)
  • [10] -, Hidden symmetries of special functions, SIAM Rev. (to appear). MR 0262554 (41:7160)
  • [11] G. H. Hardy, J. E. Littlewood and G. Pólya, Inequalities, 2nd ed., Cambridge Univ. Press, Cambridge, 1952. MR 13, 727.

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 33.19

Retrieve articles in all journals with MSC: 33.19


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1970-0257412-X
Keywords: Elliptic integrals, inequalities, ellipsoid, capacity, duplication theorem, hypergeometric $ R$-functions
Article copyright: © Copyright 1970 American Mathematical Society

American Mathematical Society