ON THE ABSOLUTE NÖRLUND SUMMABILITY
FACTORS OF INFINITE SERIES

S. R. SINGH

Abstract. Taking the start from an earlier result on the absolute harmonic summability factors due to S. N. Lal, we obtain in this paper suitable factors \(\{e_n\} \) so that the series \(\sum a_n e_n \) may be summable \(|N, p_n| \), whenever the series \(\sum a_n \) is summable \(|C, 1| \).

1. Let \(\{S_n\} \) denote the \(n \)th partial sum of the series \(\sum a_n \). Let \(\{p_n\} \) be a sequence of real numbers and let us write

\[
P_n = p_0 + p_1 + p_2 + \cdots + p_n, \quad P^{-1} = p^{-1} = 0.
\]

The sequence to sequence transformation,

\[
(1.1) \quad t_n = \frac{1}{P_n} \sum_{r=0}^{n} p_{n-r} S_r = \frac{1}{P_n} \sum_{r=0}^{n} P_{n-r} a_r \quad (P_n \neq 0),
\]

defines the sequence \(\{t_n\} \) of Nörlund means of the sequence \(\{S_n\} \), generated by the sequence of coefficients \(\{p_n\} \).

The series \(\sum a_n \) is said to be absolutely summable \((N, p_n) \), or summable \(|N, p_n| \), if the sequence \(\{t_n\} \) is of bounded variation [6], that is,

\[
\sum_n |t_n - t_{n-1}| < \infty.
\]

In the special case in which \(p_n = 1/(n + 1) \), the summability \(|N, p_n| \) is the same as absolute harmonic summability.

Also, when

\[
(1.2) \quad p_n = \left(\frac{n + \alpha - 1}{\alpha - 1} \right) = \frac{\Gamma(n + \alpha)}{\Gamma(n + 1) \Gamma(\alpha)} \quad (\alpha \geq 0),
\]

the Nörlund mean reduces to the familiar \((C, \alpha) \) mean. Thus the summability \(|N, p_n| \), when \(p_n \) is given by (1.2) is the same as the summability \(|C, \alpha| \).

2. Throughout the present paper we write

\[
B_n = \sum_{\nu=1}^{n} \nu a_{\nu}, \quad \Delta x_n = x_n - x_{n+1},
\]

Received by the editors November 13, 1969.
AMS Subject Classifications. Primary 4010, 4030, 4031, 4032; Secondary 4220.
Key Words and Phrases. Nörlund means, absolutely summable \((N, p_n) \), absolute harmonic summability, summability \(|C, \alpha| \), convex sequences, absolute summability factor theorem.
and C to denote an absolute constant not necessarily the same at each occurrence.

3. In a paper in this journal Lal [4] established the following

Theorem A. If $B_n = O(n)$, then the series $\sum a_n \log(n+1)/n$, where $\{\lambda_n\}$ is a convex sequence, such that $\sum n^{-1}\lambda_n$ is convergent, is absolutely harmonic summable.

With the help of this theorem Lal obtained a result on absolute harmonic summability factors of Fourier series (see [4]). These results were extended by several workers such as Bhatt [2], Mohapatra, Das and Srivastava [8], Mehrotra [7], Ahmad [1], and others.

In this paper we establish the following absolute summability factor theorem, which when combined with a known result yields a result more general than Theorem A (see §6, Theorem 2).

Theorem 1. Let $p_0 > 0$ and p_n be a nonnegative and nonincreasing sequence. If a series $\sum a_n$ is summable C, 1, and a sequence $\{\epsilon_n\}$ is such that,

3.1) $n\epsilon_n = O(P_n)$,

and

3.2) $n\Delta\epsilon_n = O(1)$,

as $n \to \infty$, then the series $\sum a_n\epsilon_n$ is summable N, p_n.

It is interesting to note that the following form of a result due to Kogbetliantz \[3\] follows as a corollary of our theorem.

Corollary. If a series $\sum a_n$ is summable C, 1, then the series $\sum a_n\epsilon_n$ is summable C, β $(0 < \beta \leq 1)$,

where

$\epsilon_n = 1/(n + 1)^{1-\beta}$.

4. We require the following lemma to establish our theorem.

Lemma [1]. If $p_0 > 0$ and p_n is a nonnegative and nonincreasing sequence, then for $\nu \geq 1$

\[4.1\] $\sum_{n=\nu}^{\infty} \frac{p_n p_{n-\nu}}{P_n P_{n-1}} \leq C$, ν

\[4.2\] $\sum_{n=\nu}^{\infty} \frac{p_n(P_n - P_{n-\nu})}{P_n P_{n-1}} \leq C$.

1 In 1952 Peyerimhoff [9], gave a simpler proof of Kogbetliantz's result.
5. Proof of the theorem. Let \(\tau_n \) denote the \(n \)th Nörlund mean of the series \(\sum a_n \varepsilon_n \). Then by definition,

\[
\tau_n = \frac{1}{P_n} \sum_{r=0}^{n} \varphi_n^r \sum_{\mu=0}^{r} a_{\mu} \varepsilon_{\mu} = \frac{1}{P_n} \sum_{r=0}^{n} \sum_{\mu=0}^{r} P_{n-r} a_{r} \varepsilon_{r},
\]

so that

\[
\tau_n - \tau_{n-1} = \frac{1}{P_n P_{n-1}} \sum_{r=1}^{n} (P_n \varphi_n^r - P_{n-r} \varphi_n) \varepsilon_r a_r
\]

\[= \frac{\varphi_n}{P_n P_{n-1}} \sum_{r=1}^{n} (P_n - P_{n-r}) \varepsilon_r a_r
\]

\[+ \frac{1}{P_{n-1}} \sum_{r=1}^{n} (\varphi_n^r - \varphi_n) \varepsilon_r a_r
\]

\[= \frac{\varphi_n}{P_n P_{n-1}} \sum_{r=1}^{n-1} \Delta_r \left\{ (P_n - P_{n-r}) \varepsilon_r \right\} B_r
\]

\[+ \frac{\varphi_n}{P_n P_{n-1}} \left\{ (P_n - P_0) \frac{\varepsilon_n}{n} \right\} B_n
\]

\[+ \frac{1}{P_{n-1}} \sum_{r=1}^{n-1} \Delta_r \left\{ (\varphi_n^r - \varphi_n) \frac{\varepsilon_r}{n} \right\} B_r
\]

\[= \frac{\varphi_n}{P_n P_{n-1}} \sum_{r=1}^{n-1} \Delta_r \left\{ (P_n - P_{n-r}) \frac{\varepsilon_r}{n} \right\} B_r
\]

\[+ \frac{1}{P_{n-1}} \left\{ (P_0 - \varphi_n) \frac{\varepsilon_n}{n} \right\} B_n
\]

and therefore

\[
\sum_{n=r}^{\infty} \left| \frac{\Delta_n p_{n-r-1}}{P_{n-1}} \right| \leq \frac{C}{P_r} + \frac{C}{r},
\]

and

\[
\sum_{n=r}^{\infty} \left| \frac{p_{n-r} - p_n}{P_{n-1}} \right| \leq C.
\]
Thus to establish the theorem we have to show that

\[(5.1) \quad \sum_{n=1}^{\infty} \frac{\varphi_n}{P_n P_{n-1}} \sum_{r=1}^{n} \Delta_r \left\{ \left(P_n - P_{n-r} \right) \frac{\epsilon_r}{\nu} \right\} \left| B_r \right| < \infty, \]

and

\[(5.2) \quad \sum_{n=1}^{\infty} \frac{1}{P_{n-1}} \sum_{r=1}^{n} \Delta_r \left\{ \left(P_{n-r} - P_n \right) \frac{\epsilon_r}{\nu} \right\} \left| B_r \right| < \infty. \]

Before proceeding to the proof of (5.1) and (5.2), we observe that, under the hypothesis (3.1) of our theorem \(\epsilon_n = O(P_n/n) = O(1) \), as \(n \to \infty \) since \(P_n/n \) is monotonic nonincreasing [5]. We now have

\[
\sum_1 = O(1) \sum_{n=1}^{\infty} \frac{\varphi_n}{P_n P_{n-1}} \sum_{r=1}^{n} \left(P_n - P_{n-r} \right) | \epsilon_r | \left| \frac{B_r}{\nu^2} \right| \\
+ O(1) \sum_{n=1}^{\infty} \frac{\varphi_n}{P_n P_{n-1}} \sum_{r=1}^{n} \left(P_n - P_{n-r} \right) \Delta \epsilon_r \left| \frac{B_r}{(\nu + 1)} \right| \\
+ O(1) \sum_{n=1}^{\infty} \frac{\varphi_n}{P_n P_{n-1}} \sum_{r=1}^{n} \epsilon_{r+1} \left| \frac{B_r}{(\nu + 1)} \right| \\
+ O(1) \sum_{n=1}^{\infty} \frac{\epsilon_r \left| B_r \right|}{\nu^2} \sum_{n=1}^{\infty} \frac{\varphi_n (P_n - P_{n-r})}{P_n P_{n-1}} \\
+ O(1) \sum_{n=1}^{\infty} \frac{\Delta \epsilon_r \left| B_r \right|}{(\nu + 1)} \sum_{n=1}^{\infty} \frac{\varphi_n (P_n - P_{n-r})}{P_n P_{n-1}} \\
+ O(1) \sum_{n=1}^{\infty} \frac{\epsilon_{r+1} \left| B_r \right|}{(\nu + 1)} \sum_{n=1}^{\infty} \frac{\varphi_n P_{n-r}}{P_n P_{n-1}} \\
= O(1) \sum_{r=1}^{\infty} \frac{| \epsilon_r | \left| B_r \right|}{\nu^2} + O(1) \sum_{r=1}^{\infty} \frac{| \Delta \epsilon_r | \left| B_r \right|}{\nu} \\
= O(1) \sum_{r=1}^{\infty} \frac{| \epsilon_r | \left| B_r \right|}{\nu^2} + O(1) \sum_{r=1}^{\infty} \frac{\nu | \Delta \epsilon_r | \left| B_r \right|}{\nu^2} \\
= O(1) \sum_{r=1}^{\infty} \frac{| B_r |}{\nu^2} \\
= O(1)
\]
by (4.1), (4.2) of the lemma and under the hypotheses of the theorem (since the series \(\sum a_n \) is summable \(| C, 1 |, \sum |B_n|/n^2 < \infty\). Again,

\[
\Sigma_2 = O(1) \sum_{n=1}^{\infty} \frac{1}{P_{n-1}} \sum_{r=1}^{n} (p_{n-r} - p_n) |\varepsilon_r| \frac{|B_r|}{\nu^2}
\]

\[
+ O(1) \sum_{n=1}^{\infty} \frac{1}{P_{n-1}} \sum_{r=1}^{n} |\Delta p_{n-r-1}| |\varepsilon_{r+1}| \frac{|B_r|}{\nu + 1}
\]

\[
+ O(1) \sum_{n=1}^{\infty} \frac{1}{P_{n-1}} \sum_{r=1}^{n} |\Delta p_{n-r-1}| |\varepsilon_{r+1}| \frac{|B_r|}{\nu + 1}
\]

= \(O(1)\) \sum_{r=1}^{\infty} \frac{|\varepsilon_r| |B_r|}{\nu^2} + \(O(1)\) \sum_{r=1}^{\infty} \frac{|\Delta \varepsilon_r| |B_r|}{\nu}

+ \(O(1)\) \sum_{r=1}^{\infty} \frac{|\varepsilon_{r+1}| |B_r|}{\nu + 1} \nu + 1

+ \(O(1)\) \sum_{r=1}^{\infty} \nu |\Delta \varepsilon_r| \frac{|B_r|}{\nu^2}

+ \(O(1)\) \sum_{r=1}^{\infty} \nu |\varepsilon_{r+1}| \frac{|B_r|}{\nu + 1}

= \(O(1)\) \sum_{r=1}^{\infty} \frac{|B_r|}{\nu^2}

= \(O(1)\)

by (4.3), (4.4) of the lemma and under the hypotheses of the theorem.

Combining the estimates of \(\Sigma_1\) and \(\Sigma_2\), we see that the theorem is completely established.

6. Prasad and Bhatt [10] established the following

Theorem B. If \(\{\lambda_n\}\) is a convex sequence, such that \(\sum n^{-1}\lambda_n\) is convergent, and
then the series \(\sum \{ \log (n+1) \}^{-k} \lambda_n a_n \) is summable \(|C, 1| \).

If we combine the above result with Theorem 1 we get the following

Theorem 2. If \(\{ \lambda_n \} \) is a convex sequence, such that \(\sum n^{-1} \lambda_n \) is convergent, and if (6.1) holds then the series \(\sum (a_n \lambda_n \epsilon_n / \{ \log (n+1) \}^k) \) is summable \(|N, p_n| \), provided that

\[
n \epsilon_n = O(P_n), \quad \text{and} \quad n \Delta \epsilon_n = O(1),
\]

as \(n \to \infty \).

Finally, the author expresses his warmest thanks to Dr. S. N. Lal for his valuable guidance and helpful suggestions. Thanks are also due to the University Grants Commission for the financial assistance.

References

Banaras Hindu University, Varanasi-5, India