Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

On the absolute Nörlund summability factors of infinite series


Author: S. R. Singh
Journal: Proc. Amer. Math. Soc. 25 (1970), 684-689
MSC: Primary 42.20
DOI: https://doi.org/10.1090/S0002-9939-1970-0257646-4
MathSciNet review: 0257646
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Taking the start from an earlier result on the absolute harmonic summability factors due to S. N. Lal, we obtain in this paper suitable factors $ \{ {\epsilon _n}\} $ so that the series $ \sum {{a_n}} {\epsilon _n}$ may be summable $ \vert N,\;{p_n}\vert$, whenever the series $ \sum {{a_n}} $ is summable $ \vert C,\;1\vert$.


References [Enhancements On Off] (What's this?)

  • [1] Z. U. Ahmad, On the absolute Nörlund summability factors of a Fourier series, Riv. Mat. Univ. Parma (2) 7 (1966), 157-169. MR 37 #6674. MR 0231119 (37:6674)
  • [2] S. N. Bhatt, On the absolute summability of factored Fourier series, Ann. Mat. Pura Appl. (4) 72 (1966), 253-265. MR 35 #657. MR 0209761 (35:657)
  • [3] E. Kogbetliantz, Sur les séries absolument sommables par la méthode des moyennes arithmetiqués, Bull. Sci. Math. (2) 49 (1925), 234-256.
  • [4] S. N. Lal, On the absolute harmonic summability of the factored Fourier series, Proc. Amer. Math. Soc. 14 (1963), 311-319. MR 26 #5344. MR 0147831 (26:5344)
  • [5] L. McFadden, Absolute Nörlund summability, Duke Math. J. 9 (1942), 168-207. MR 3, 295. MR 0006379 (3:295g)
  • [6] F. M. Mears, Some multiplication theorems for Nörlund means, Bull. Amer. Math. Soc. 41 (1935), 875-880. MR 1563208
  • [7] N. D. Mehrotra, On the absolute Nörlund summability of a factored Fourier Series, Proc. Japan Acad. 41 (1965), 46-51. MR 31 #5037. MR 0180807 (31:5037)
  • [8] R. N. Mohapatra, G. Das and V. P. Srivastava, On absolute summability factors of infinite series and their application to Fourier series, Proc. Cambridges Philos. Soc. 63 (1967), 107-118. MR 34 #3155. MR 0203302 (34:3155)
  • [9] A. Peyerimhoff, Über einen satz von Hernn Kogbetliantz aus der Theorie der absoluten Cesàroschen Summierbarkeit, Arch. Math., 3 (1952), 262-265. MR 14, 551. MR 0051947 (14:551e)
  • [10] B. N. Prasad and S. N. Bhatt, The summability factors of a Fourier series, Duke Math. J. 24 (1957), 103-117. MR 18, 892. MR 0084626 (18:892c)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 42.20

Retrieve articles in all journals with MSC: 42.20


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1970-0257646-4
Keywords: Nörlund means, absolutely summable $ (N,\;{p_n})$, absolute harmonic summability, summability $ \vert C,\;\alpha \vert$, convex sequences, absolute summability factor theorem
Article copyright: © Copyright 1970 American Mathematical Society

American Mathematical Society