Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

On regular matrices that induce the Gibbs phenomenon


Author: Joaquin Bustoz
Journal: Proc. Amer. Math. Soc. 25 (1970), 481-487
MSC: Primary 40.31; Secondary 42.00
DOI: https://doi.org/10.1090/S0002-9939-1970-0259416-X
MathSciNet review: 0259416
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Let $ s = \{ {s_n}(z)\} $ be a sequence of complex valued functions defined in a subset $ D$ of the complex plane and suppose that $ {s_n}(z)$ converges to $ f(z)$ for $ z \in D$. For $ {z_0} \in \overline D $ let $ K({z_0};\;s)$ and $ K({z_0};\,f)$ be the cores of $ s$ and $ f$ respectively. We say that $ s$ does not have the Gibbs phenomenon at $ {z_0}$ if $ K({z_0};\,s) \subseteq K({z_0};\,f)$. The regular matrix $ A$ is said to induce the Gibbs phenomenon in $ s$ if $ K({z_0};\,s) \subseteq K({z_0};\,f)$ but $ K({z_0};\,As) \nsubseteq K({z_0};\,f)$. We characterize those regular matrices that induce the Gibbs phenomenon.


References [Enhancements On Off] (What's this?)

  • [1] R. Atalla and J. Bustoz, On sequential cores and a theorem of R. R. Phelps, Proc. Amer. Math. Soc. 21 (1969), 36-42. MR 0243357 (39:4679)
  • [2] R. G. Cooke, Infinite matrices and sequence spaces, Macmillan, New York, 1950; reprint, Dover, New York, 1955. MR 12, 694. MR 0040451 (12:694d)
  • [3] W. A. Hurwitz, Some properties of methods of evaluation of divergent sequences. Proc. London Math. Soc. (2) 26 (1927), 231-248.
  • [4] S. Izumi and M. Satô, Fourier series. $ {\text{X}}$: Rogosinski's Lemma, Kōdai Math. Sem. Rep. 8 (1956), 164-180. MR 19, 138. MR 0086179 (19:138c)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 40.31, 42.00

Retrieve articles in all journals with MSC: 40.31, 42.00


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1970-0259416-X
Keywords: Core, Gibbs phenomenon, regular matrix, Gibbs set
Article copyright: © Copyright 1970 American Mathematical Society

American Mathematical Society