ON THE SOLUTION OF LINEAR FUNCTIONAL EQUATIONS BY AVERAGING ITERATION

W. G. DOTSON, JR.

Curtis Outlaw and C. W. Groetsch [4] have recently shown that if \(T \) is an asymptotically convergent continuous linear self-mapping of a Banach space \(E \), and if \(f \) is in the range of \(I - T \), and \(0 < \lambda < 1 \), and \(V_\lambda = \lambda I + (1 - \lambda)(T + f) \), then for each \(x \in E \) the sequence \(\{ V_\lambda^n x \} \) converges to a solution \(u \) of the equation \(u - Tu = f \). Since under these same hypotheses Browder and Petryshyn [1] showed that the sequence \(\{(T + f)^n x\} \) also converges to a solution \(u \) of \(u - Tu = f \), the Outlaw-Groetsch theorem essentially says that the averaged iteration \(x_{n+1} = V_\lambda x_n = \lambda x_n + (1 - \lambda)(Tx_n + f) \) yields a conservative process. The purpose of the present paper is to establish some fairly general conditions under which \(\{ V_\lambda^n x \} \) will converge to a solution \(u \) of \(u - Tu = f \) (even when \(\{(T + f)^n x\} \) does not).

Suppose \(E \) is a Banach space, \(T: E \rightarrow E \) is a continuous linear operator, and \(f \in E \). For \(0 < \lambda < 1 \) we define \(S_\lambda = \lambda I + (1 - \lambda)T \), \(V_\lambda = \lambda I + (1 - \lambda)(T + f) \), and \(A_\lambda = [a_{n,j}] \) where \(a_{11} = 1 \), \(a_{ij} = 0 \) for \(j > 1 \), and for \(n > 1 \), \(a_{nj} = \frac{(-1)^{n-j}}{(n-1)!} \lambda^{n-j} (1 - \lambda)^{j-1} \) for \(1 \leq j \leq n \), and \(a_{nj} = 0 \) for \(j > n \). It is easily seen that \(A_\lambda \) is a lower-triangular, nonnegative, infinite matrix with each row-sum equal to one and each column-limit equal to zero. For \(n > 1 \) we have the real polynomial \(a_n^\lambda(t) \) defined by

\[
S_{\lambda}^{n-1}(t) = (\lambda + (1 - \lambda)t)^{n-1} = \sum_{j=1}^{n} a_{n,j} t^{j-1} = a_n^\lambda(t).
\]

So, defining \(A_n^\lambda = a_n^\lambda(T) \), we have \(S_{\lambda}^{n-1} = A_n^\lambda \), since \(T \) is a linear operator. Defining

\[
b_n^\lambda(t) = (1 - a_n^\lambda(t))/(1 - t), \quad B_n^\lambda = b_n^\lambda(T),
\]

we have, for \(n \geq 2 \), \(B_n^\lambda = (1 - \lambda)[I + S_\lambda + S_\lambda^2 + \cdots + S_\lambda^{n-2}] \), since \(I - T = (1 - \lambda)^{-1}(I - S_\lambda) \). Also, for \(n \geq 2 \), we have

\[
V_\lambda^{n-1} = [S_\lambda + (1 - \lambda)f]^{n-1} = S_\lambda^{n-1} + (1 - \lambda)[I + S_\lambda + \cdots + S_\lambda^{n-2}](f) = A_n^\lambda + B_n^\lambda f,
\]

Received by the editors June 10, 1969.

1 This research was supported in part by the North Carolina Engineering Foundation.
since S_λ is linear. It now follows at once from Theorem 3 of [3] that if T is asymptotically A_λ-convergent (i.e., $\{I, T, T^2, \ldots\}$ is an asymptotically convergent semigroup with $\{A_\lambda^n\}$ as a system of almost invariant integrals) then $\{B_\lambda^n\}$ forms a system of companion integrals for $\{A_\lambda^n\}$ with respect to T. Consequently, with the above observation that $V_\lambda^{n-1}x = A_\lambda x + B_\lambda f$ for all $x \in E$ and all $n \geq 2$, Theorem 4 of [3] specializes to yield the following result.

Theorem 1. Suppose T is an asymptotically A_λ-convergent continuous linear operator on the Banach space E, where $0 < \lambda < 1$, and suppose $f \in E$. Then, the following are true:

(a) If f is in the range of $I - T$, then for any $x \in E$ the sequence $\{V_\lambda^n x\}$ converges to a solution u of the equation $u - Tu = f$.

(b) If, for some $x \in E$, $\{V_\lambda^n x\}$ has a subsequence $\{V_\lambda^m x\}$ which converges weakly to a point $y \in E$, then $y - Ty = f$ and $\{V_\lambda^m x\}$ converges to y.

(c) If, for some $x \in E$, $\{V_\lambda^n x\}$ is contained in a weakly compact subset of E, then $\{V_\lambda^n x\}$ converges to a solution of the equation $u - Tu = f$.

In order to apply Theorem 1, one has to know only that the continuous linear operator T is asymptotically A_λ-convergent for some $\lambda, 0 < \lambda < 1$. In this direction we have the following result.

Theorem 2. Suppose T is a continuous linear operator on a uniformly convex Banach space E, and suppose $\|T\| \leq 1$. Then for any $\lambda, 0 < \lambda < 1$, T is asymptotically A_λ-convergent.

Proof. By Theorem 5 of [3] it suffices to show that

(a) T is asymptotically A_λ-bounded,

(b) T is asymptotically A_λ-regular, and

(c) $\{A_\lambda^n x\}$ clusters weakly for each $x \in E$.

Since $\|T\| \leq 1$ we have

$$\|A_\lambda^n\| \leq \sum_{j=1}^{n} a_{n_j} \|T\|^{j-1} \leq 1$$

for all n, so that (a) is true. To get (b) we first observe that

$$TA_\lambda^n - A_\lambda^n = S_\lambda^{n-1} T - S_\lambda^{n-1} = (1 - \lambda)^{-1} [S_\lambda^n - S_\lambda^{n-1}],$$

so that T will be asymptotically A_λ-regular (as defined in [3]) if and only if S_λ is an asymptotically regular operator in the sense of Browder and Petryshyn [2]. Since T is nonexpansive ($\|Tx - Ty\| = \|T(x - y)\| \leq \|T\| \cdot \|x - y\| \leq \|x - y\|$) and has at least one fixed point (viz. 0, since T is linear), and since E is a uniformly convex space, Theorem 5 of [2] gives us that for any $\lambda, 0 < \lambda < 1$, S_λ is an asymptotically regular
operator. Hence we get (b). Finally, since uniformly convex Banach spaces are reflexive, closed spheres in \(E \) are weakly compact. Since for any \(x \in E \) we have for all \(n \)
\[
\| A_n^\lambda x \| \leq \| A_n \| \cdot \| x \| \leq \| x \|,
\]
it follows that for any \(x \in E \) the sequence \(\{ A_n^\lambda x \} \) clusters weakly; and so we get (c). Q.E.D.

Corollary. Suppose \(T \) is a continuous linear operator on a uniformly convex Banach space \(E \), and suppose \(\| T \| \leq 1 \). Then for any \(\lambda, 0 < \lambda < 1 \), and for any \(x \in E \) the sequence \(\{ S_n^\lambda x \} \) converges (strongly) to a fixed point of \(T \).

Proof. By Theorem 2, \(T \) is asymptotically \(A^\lambda \)-convergent. Since \(T \) is linear, \((I - T)(0) = 0 \). Hence part (a) of Theorem 1 can be applied, with \(f = 0 \). But for \(f = 0 \) we have \(V_\lambda = S_\lambda \), and, of course, solutions of \(u - Tu = 0 \) are fixed points of \(T \). Q.E.D.

Remark 1. Setting \(\lambda = 1/2 \) in the above corollary provides an affirmative answer to a conjecture of Outlaw and Groetsch [4, p. 431].

Remark 2. It is easily seen that there are continuous linear operators which satisfy the hypotheses of Theorem 2, but which are not asymptotically convergent operators, e.g., any rotation of a finite-dimensional Euclidean space about the origin, or, in \(l^2 \), the shift operator \((x_1, x_2, \ldots) \to (0, x_1, x_2, \ldots) \).

References

North Carolina State University, Raleigh, North Carolina 27607