Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

Oscillation of solutions of certain ordinary differential equations of $ n{\rm th}$ order


Authors: Gerald H. Ryder and David V. V. Wend
Journal: Proc. Amer. Math. Soc. 25 (1970), 463-469
MSC: Primary 34.42
DOI: https://doi.org/10.1090/S0002-9939-1970-0261091-5
MathSciNet review: 0261091
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Necessary and sufficient conditions are given that all solutions of $ {y^{(n)}} + f(t,\,y) = 0$ which are continuable to infinity are oscillatory in the case $ n$ is even and are oscillatory or strongly monotone in the case $ n$ is odd. The results generalize to arbitrary $ n$ recent results of J. Macki and J. S. W. Wong for the case $ n = 2$ and include as special cases results of I. Kiguradze, I. Ličko and M. Švec, and Š. Belohorec.


References [Enhancements On Off] (What's this?)

  • [1] Š. Belohorec, Oscillatory solutions of certain nonlinear differential equations of the second order, Mat.-Fyz. Časopis Sloven. Akad. Vied 11 (1961), 250-255. (Slovak)
  • [2] I. T. Kiguradze, The capability of certain solutions of ordinary differential equations to oscillate, Dokl. Akad. Nauk SSSR 144 (1962), 33-36 = Soviet Math. Dokl. 3 (1962), 649-652. MR 25 #278. MR 0136817 (25:278)
  • [3] -, The problem of oscillations of solutions of nonlinear differential equations, J. Differential Equations 3 (1967), 773-782.
  • [4] I. Ličko and M. Švec, Le caractère oscillatoire des solutions de l'équation $ {y^{(n)}} + f(x){y^\alpha } = 0,\;n > 1$, Czechoslovak Math. J. 13 (88) (1963), 481-491. MR 28 #4210. MR 0161001 (28:4210)
  • [5] A. Kneser, Untersuchungen über die reelen Nullstellen der Integrale linearer Differentialgleichungen, Math. Ann. 42 (1893), 409-435. MR 1510784
  • [6] J. W. Macki and J. S. W. Wong, Oscillation of solutions to second-order nonlinear differential equations, Pacific J. Math. 24 (1968), 111-117. MR 37 #507. MR 0224908 (37:507)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 34.42

Retrieve articles in all journals with MSC: 34.42


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1970-0261091-5
Keywords: Oscillation of solutions, nonoscillation of solutions, nonlinear differential equations, strongly nonlinear differential equations
Article copyright: © Copyright 1970 American Mathematical Society

American Mathematical Society