SHORTER NOTES

The purpose of this department is to publish very short papers of an unusually elegant and polished character, for which there is no other outlet.

CURVATURE FORMS FOR 2-MANIFOLDS

N. R. WALLACH AND F. W. WARNER

The Gauss Bonnet formula is a well-known necessary condition for a 2-form to be the curvature form of a Riemannian metric on a 2-manifold. It appears to be not so well known that it is also sufficient. Precisely,

Theorem. Let M be a compact, connected, orientable 2-dimensional manifold. Let Ω be a 2-form on M. Then a necessary and sufficient condition for Ω to be the curvature form of a Riemannian metric on M is that

$$(1) \quad \int_M \Omega = 2\pi \chi(M),$$

where $\chi(M)$ is the Euler characteristic of M.

Proof. As we have remarked, the necessity of (1) is the Gauss Bonnet Theorem. For the sufficiency, let g be any Riemannian metric on M. We shall show that Ω is in fact the curvature form of a Riemannian metric conformal to g (that is, of the form $e^{2\lambda}g$ for some C^∞ function λ on M). Let Ω be the curvature form for g. Then

$$(2) \quad \int_M (\Omega - \bar{\Omega}) = 0.$$

Now (2) is precisely the statement that $\Omega - \bar{\Omega}$ is orthogonal to the harmonic 2-forms on M. Thus by the Hodge Theorem, $\Omega - \bar{\Omega}$ is in the image of the Laplacian. Since $\Omega - \bar{\Omega}$ is a 2-form on a 2-manifold, this means that there is a 2-form β such that

$$\Omega - \bar{\Omega} = d \ast d \ast \beta.$$

Let $\lambda = \ast \beta$. That $\bar{\Omega}$ is then the curvature form of the metric $\bar{g} = e^{2\lambda}g$.

Received by the editors September 26, 1969.

AMS Subject Classifications. Primary 5372, 5345; Secondary 5325, 5732.

Key Words and Phrases. Gauss-Bonnet, Riemannian manifold, curvature forms, conformal metric, Laplacian, Hodge Theorem.

1 Supported in part by NSF grant GP 13850.
follows from the classical formula for change of curvature under conformal change of metric. We may compute this simply as follows. Let \(\{\omega_1, \omega_2\} \) be a local oriented orthonormal coframe field on \(M \) for the metric \(g \). If we set \(\tilde{\omega}_i = e^{\lambda} \omega_i \), then \(\{\tilde{\omega}_1, \tilde{\omega}_2\} \) is a local oriented orthonormal coframe field for \(\tilde{g} \). Now \(\Omega = d\phi_{12} \) where the Riemannian connection form \(\phi_{12} \) is uniquely determined by the requirements that \(\phi_{12} = -\phi_{21} \), \(d\omega_1 = -\phi_{12} \wedge \omega_2 \), and \(d\omega_2 = -\phi_{21} \wedge \omega_1 \). We compute \(\tilde{\phi}_{12} \). Let \(d\lambda = \lambda_1 \omega_1 + \lambda_2 \omega_2 \). Then

\[
d\tilde{\omega}_1 = e^{\lambda}(d\lambda \wedge \omega_1 - \phi_{12} \wedge \omega_2) = - (\lambda_2 \omega_1 - \lambda_1 \omega_2 + \phi_{12}) \wedge \tilde{\omega}_2.
\]

Thus \(\tilde{\phi}_{12} = \lambda_2 \omega_1 - \lambda_1 \omega_2 + \phi_{12} = \phi_{12} - *d\lambda \). Thus the curvature of the metric \(\tilde{g} = e^{2\lambda} g \) is \(d\tilde{\phi}_{12} = d\phi_{12} - d* d\lambda = \Omega - d*d\lambda = \tilde{\Omega} \).