Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

Graph closures and metric compactifications of $ N$


Authors: A. K. Steiner and E. F. Steiner
Journal: Proc. Amer. Math. Soc. 25 (1970), 593-597
MSC: Primary 54.53
DOI: https://doi.org/10.1090/S0002-9939-1970-0264614-5
MathSciNet review: 0264614
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: It is shown that all compactifications of the positive integers $ N$ which have metrizable remainders are themselves metrizable. This is done by first proving that each Hausdorff compactification of a noncompact locally compact space is the graph closure in an appropriate space. It is then shown that any two compactifications of $ N$ which have homeomorphic metrizable remainders are homeomorphic.


References [Enhancements On Off] (What's this?)

  • [1] J. M. Aarts and P. van Emde Boas, Continua as remainders in compact extensions, Nieuw Arch. Wisk. (3) 15 (1967), 34-37. MR 35 #4885. MR 0214033 (35:4885)
  • [2] W. W. Comfort and S. Negrepontis, Homeomorphs of three subspaces of $ \beta N\backslash N$, Math. Z. 107 (1968), 53-58. MR 38 #2739. MR 0234422 (38:2739)
  • [3] L. Gillman and M. Jerison, Rings of continuous functions, The University Series in Higher Math., Van Nostrand, Princeton, N. J., 1960. MR 22 #6994. MR 0116199 (22:6994)
  • [4] P. R. Halmos, Permutations of sequences and the Schröder-Bernstein theorem, Proc. Amer. Math. Soc. 19 (1968), 509-510. MR 37 #2179. MR 0226590 (37:2179)
  • [5] J. von Neumann, Charakterisierung des Spektrums eines Integraloperators, Hermann, Paris, 1935.
  • [6] A. K. Steiner and E. F. Steiner, Compactifications as closures of graphs, Fund. Math. 63 (1968), 221-223. MR 38 #6546. MR 0238270 (38:6546)
  • [7] J. A. Yorke, Permutations and two sequences with the same cluster set, Proc. Amer. Math. Soc. 20 (1969), 606. MR 0235516 (38:3825)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 54.53

Retrieve articles in all journals with MSC: 54.53


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1970-0264614-5
Keywords: Compact spaces, compactifications, metric spaces, graph closures
Article copyright: © Copyright 1970 American Mathematical Society

American Mathematical Society