A NOTE ON ISOMORPHISMS OF GROUP ALGEBRAS

GEOFFREY V. WOOD

Abstract. In this note, it is shown that, if G_1, G_2 are compact groups, and $C(G_1)$, $C(G_2)$ are the (convolution) algebras of continuous, complex-valued functions on G_1 and G_2 respectively, then the existence of a norm-decreasing algebra-isomorphism of $C(G_1)$ onto $C(G_2)$ ensures that the groups are isomorphic. The corresponding theorem with G_1 and G_2 locally finite discrete groups is also proved.

The main theorem extends the isometric result of Edwards [1] (his result applies to $C_c(G)$ for any locally compact group G) and corresponds to the results for L^1-algebras and measure algebras by Wendel [7], Rigelhof [6], and Greenleaf [2].

This proof is surprisingly longer than the proofs of Wendel and Rigelhof. Wendel's method is not applicable here (since $C(G)$ does not have a minimal approximate identity), and we use the result for measure algebras proved by Rigelhof.

We need two results which may be of independent interest. We assume throughout that all compact groups have Haar measure normalized to have total mass one.

Lemma 1. For a compact group G with identity 1, the linear functional L on $C(G)$ defined by $L(f) = f(1)$ is characterized by the two properties

1. $L(f*g) = L(g*f)$ all $f, g \in C(G)$,
2. $L(e_a) = n_a^2$ for each character e_a with degree n_a.

Proof. It is sufficient to prove the characterization on the minimal two-sided ideals of $C(G)$. For then, by the Peter-Weyl theorem, the characterization will extend to the whole of $C(G)$.

Let N_a be a minimal two-sided ideal with identity e_a and degree n_a. Then, [4, p. 158], N_a is isomorphic to the full $n_a \times n_a$ matrix algebra over C. If $f \in N_a$ corresponds to the matrix F, then $f(1) = n_a \text{ trace}(F)$. Since the trace is characterized as the only linear functional satisfying $\text{tr}(AB) = \text{tr}(BA)$ (all matrices A, B) and $\text{tr}(I) = n_a$, (see [3, p. 277]), we have the characterization on N_a.

Received by the editors October 15, 1969.

AMS Subject Classifications. Primary 4665; Secondary 4250.

Key Words and Phrases. Compact groups, norm-decreasing algebra-isomorphism, Peter-Weyl theorem, group isomorphism and homeomorphism, locally finite discrete groups.

1 This research was partially supported by NSF Grant GP-8665.
Corollary. If \(G_1 \) and \(G_2 \) are compact groups with identities \(1_1 \) and \(1_2 \) respectively, and \(T: C(G_1) \to C(G_2) \) is an algebra-isomorphism, then \((Tf)(1_2) = f(1_1)\) for all \(f \in C(G_1) \).

Proof. Let \(e_\alpha \) be a character on \(G \) with degree \(n_\alpha \). Since \(T \) is an algebra-isomorphism, \(Te_\alpha \) is the identity of a minimal two-sided ideal of \(C(G_2) \), and hence is a character on \(G_2 \) also with degree \(n_\alpha \). The characterization of Lemma 1 now gives the result.

Theorem 1. Let \(G_1 \) and \(G_2 \) be compact groups, with normalized Haar measure. If \(T: C(G_1) \to C(G_2) \) is a norm-decreasing algebra-isomorphism, then \(T \) is of the form
\[
(Tf)(x) = \lambda(x)f(\phi x) \quad (f \in C(G_1), \ x \in G_2)
\]
where \(\phi: G_2 \to G_1 \) is a group isomorphism and a homeomorphism and \(\lambda: G_2 \to T \) is a continuous group homomorphism. (\(T \) is the circle group \(= \{X:|X|=1\} \).

Proof. We show that the dual map \(T^*: M(G_2) \to M(G_1) \) is a norm-decreasing isomorphism, and then we use Rigelhof's result in [6]. \(T^* \) is clearly norm-decreasing, since \(T \) is, so we simply have to show that it is an isomorphism.

We can embed \(C(G_i) \) in \(M(G_i) \) by
\[
\mu_f(g) = (f*g)(1_i) \quad (f, g \in C(G_i)).
\]
(In fact, this embedding is an antimonomorphism, since \(\mu_f \cdot \mu_g = \mu_{fg} \).) For \(f, g \in C(G_1) \),
\[
(T^* \mu_{Tf})(g) = \mu_{Tf}(Tg)
= (Tf*Tg)(1) \quad \text{(definition)}
= [T(f*g)](1)
= (f*g)(1) \quad \text{(corollary)}
= \mu_f(g). \quad \text{(definition)}
\]
Therefore \(T^* \mu_{Tf} = \mu_f \) for all \(f \in C(G_1) \), i.e., \(T^* = T^{-1} \) on the image of \(C(G_2) \) in \(M(G_2) \) and hence is an isomorphism. \(T^* \) on \(M(G_2) \) is an extension of \(T^{-1} \) on \(C(G_2) \) given by \(T^* \mu = \lim \alpha T^{-1}(\mu*f_\alpha) \) where \((f_\alpha) \) is a central approximate identity in \(C(G_2) \). Thus \(T^* \) is an isomorphism on \(M(G_2) \) and Rigelhof's result applies.

Remark. The corresponding theorem with \(G_1 \) and \(G_2 \) locally compact groups, and \(T: C_c(G_1) \to C_c(G_2) \) is a norm-decreasing isomorphism is still open. However, it is clear from the proof of the above theorem that it would be sufficient to show that \((Tf)(1_2) = f(1_1)\) for all
f ∈ C_0(G_1). (But this condition is not necessary. See final remark.)

With a strengthening of Lemma 1 and the Corollary, we can prove Theorem 1 in the case where G_1 and G_2 are discrete locally finite groups. But we first give a generalization of Lemma 1.

Lemma 2. Let G be a compact group with identity 1. If A is a closed ideal of C(G) with A*A uniformly dense in A, and L is a continuous linear functional on A satisfying:

1. \(L(f*g) = L(g*f) \) all \(f, g \in A \),
2. \(L(e_i) = n_i \) for each character \(e_i \) in A with degree \(n_i \), then \(L(f) = f(1) \) (all \(f \in A \)).

Proof. As in Lemma 1, we know that these properties ensure that \(L(f) = f(1) \) for all \(f \) in a minimal two-sided ideal \(N \) of C(G). Since A is the uniform closure of \(\sum\{ N_i : N_i \subseteq A \} \) [8, Theorem 5.1], the result follows.

Remark. It is well known that every closed ideal of A of C(G) satisfies A*A dense in A. The existence of a closed subalgebra of C(T) without this property is due to Rider (unpublished, but see [5]).

Lemma 3. Let G_1 and G_2 be compact groups. If \(T : C(G_1) \to C(G_2) \) is a norm-decreasing monomorphism, then

(a) the minimal ideals of \(\text{Im } T \) are minimal ideals of C(G_2).

(b) \((Tf)(1_2) = f(1) \) all \(f \in C(G_1) \).

Proof. Let \(N_\alpha \) be a minimal two-sided ideal of C(G_1) with identity \(e_\alpha \) and dimension \(n_\alpha^2 \). Then \(TN_\alpha \) is a minimal two-sided ideal of \(\text{Im } T \) with identity \(Te_\alpha \) and dimension \(n_\alpha^2 \). In particular \(TN_\alpha \) is selfadjoint, and hence, so is \(Te_\alpha \). Now \(Te_\alpha \) can be written as a sum of minimal selfadjoint idempotents, say \(\sum_{k=1}^{n} e_k \). If \(R_k \) is the minimal right ideal of C(G_2) containing \(e_k \) (\(k = 1, \ldots, n \)), then \(TN_\alpha \subseteq \sum_{k=1}^{n} R_k \). Therefore \(\dim(TN_\alpha) \leq \sum_{k=1}^{n} R_k \). But

\[
\dim \sum_{k=1}^{n} R_k = \sum_{k=1}^{n} e_k(1_2) = (Te_\alpha)(1_2) = \| Te_\alpha \| \leq \| e_\alpha \|
\]

That is \(\dim(TN_\alpha) = \sum_{k=1}^{n} R_k \). Therefore \(TN_\alpha \) is a right ideal of C(G_2), and, by symmetry, it is also a left ideal. Since it is minimal in \(\text{Im } T \), it must be minimal in C(G_2). Therefore \(TN_\alpha = N_\alpha \) for some minimal ideal \(N_\alpha \) in C(G_2), \(Te_\alpha = e_\alpha \) is a character on G_2, and \(n_\alpha = n_\alpha^2 \).

For (b), define a linear functional \(L \) on C(G_1) by \(L(f) = Tf(1_2) \). Then \(L(f * g) = L(g * f) \), and, if \(Te_\alpha = e_\alpha \), \(L(e_\alpha) = (Te_\alpha)(1_2) = e_\alpha(1_2) = n_\alpha^2 = n_\alpha^2 \).
By Lemma 1, \(L(f) = f(1) \) all \(f \in C(G_i) \). Therefore \((Tf)(1) = f(1)\) for all \(f \in C(G_i) \).

Remark. The condition "norm-decreasing" is essential here. (It was not for the Corollary to Lemma 1.) For, if \(\mathbb{Z}_2 \) is the cyclic group of order 2 generated by \(z \), and \(D_3 \) is the dihedral group of order 6 generated by \(x \) and \(y \), define \(T: \mathbb{Z}_2 \to D_3 \) by \(T(\alpha 1 + \beta 2) = \frac{1}{2} (3\alpha - \beta) (1_2 + x) + \beta (y + y^2 + xy + xy^2) \), then \(T \) is a monomorphism with respect to convolution multiplication (each Haar measure is normalized to have total mass 1), but \(T(1) = \frac{3}{2} (1_2 + x) \).

If \(T \) is an isometry in Lemma 3, then \(\text{Im} \, T \) is a closed ideal and this gives us the following extension of Edwards' original result.

Theorem 2. If \(T \) is an isometric monomorphism of \(C(G_i) \) into \(C(G_2) \), then \(T \) is of the form

\[
(Tf)(x) = \lambda(x)f(\phi x), \quad f \in C(G_1), \quad x \in G_2,
\]

where \(\phi: G_2 \to G_1 \) is a continuous and open group homomorphism, and \(\lambda: G_2 \to T \) is a continuous group homomorphism.

Proof. Since \(T \) is an isometry, \(\text{Im} \, T \) is a closed ideal of \(C(G_2) \). Therefore, the adjoint map \(T^*: M(G_2) \to M(G_1) \) is norm-decreasing and onto. From Lemma 3, \((Tf)(1) = f(1)\) for all \(f \in C(G_1) \), and the calculation in Theorem 1 gives that \(T^* \mu_T \mu_f = \mu_f \) for all \(f \in C(G_1) \). It follows that, if \(T^*(\mu * \nu) = 0 \) for all \(\nu \in L^1(G_2) \), then \(T^* \mu = 0 \). Therefore, by Theorem 3 of [6], \(T^* \) and \(T \) are of the required form.

Remark. It is not known whether Theorem 2 is true if \(T \) is only assumed to be norm-decreasing.

The converses of Theorems 1 and 2 are true, and can be stated as follows: If \(\phi \) is a continuous and open group homomorphism (resp. isomorphism) of \(G_2 \) onto \(G_1 \) and \(\lambda: G_2 \to T \) is a continuous group homomorphism, then, defining \(T \) by

\[
(Tf)(x) = \lambda(x)f(\phi x), \quad f \in C(G_1), \quad x \in G_2,
\]

it follows that \(T \) is an isometric monomorphism (resp. norm-decreasing isomorphism) of \(C(G_1) \) into \(C(G_2) \).

We can now prove the analogue of Theorem 1 in the case where \(G_1 \) and \(G_2 \) are locally finite discrete groups.

Theorem 3. If \(G_1 \) and \(G_2 \) are locally finite discrete groups, and \(T: C_c(G_1) \to C_c(G_2) \) is a norm-decreasing algebra-isomorphism, then \(T \) is of the form \((Tf)(x) = \lambda(x)f(\phi x) \) \((f \in C_c(G_1)) \) where \(\phi: G_2 \to G_1 \) is an isomorphism and \(\lambda: G_2 \to T \) is a homomorphism.
Proof. As in Theorem 1, it is sufficient to show that \((Tf)(1_2) = f(1_1)\) all \(f \in C_c(G_1)\). For \(x \in G_1, x \neq 1_1,\) let \(H_1\) be the finite subgroup of \(G_1\), generated by \(x\). Define \(\delta_x \in C_c(G_1)\) by \(\delta_x(y) = 0\) \((y \neq x)\), \(\delta_x(x) = 1\). Then \(T\delta_x \in C_c(G_2)\). Let \(H_2\) be the finite subgroup of \(G_2\) generated by the support of \(T\delta_x\). Then \(T(C(H_1)) \subseteq C(H_2)\) and \(|H_1| \leq |H_2|\). Define \(T': C(H_1) \to C(H_2)\) by \(T'f = \left(\frac{|H_1|}{|H_2|}\right) Tf\) each \(f \in C(H_1) \subseteq C_c(G_1)\). Then \(T'\) is a norm-decreasing monomorphism of \(C(H_1)\) into \(C(H_2)\) (normalized Haar measure in \(H_1\) and \(H_2\)). By Lemma 3, \((T'f)(1_2) = f(1_1)\) all \(f \in C(H_1)\). In particular, \((T'\delta_x)(1_2) = \delta_x(1_1) = 0\) since \(x \neq 1_1\). Hence \((T\delta_x)(1_2) = 0\), and since this is true for all \(x \in G_1, x \neq 1_1\). \((T\delta_x)(1_2) = 0\) for all \(f \in C_c(G_1)\). This proves the theorem.

Let \(G_1\) and \(G_2\) be locally compact groups and let \(m_2\) be the Haar measure on \(G_2\). If \(T\) is any bounded algebra-isomorphism of \(C_c(G_1)\) onto \(C_c(G_2)\) then, if one replaces \(m_2\) by the Haar measure \((1/|T|)m_2\), then \(|T'|/|T|\) is a norm-decreasing algebra-isomorphism. Thus there are algebra-isomorphisms which are norm-decreasing which do not give rise to group isomorphisms, since there are certainly nonisomorphic groups with isomorphic group algebras.

Added in proof. Since submitting this note, the author has found an elementary proof for part of Theorem 2, which is valid for arbitrary discrete groups.

Suppose \(x \in G_1, x \neq 1_1,\) \((T\delta_x)(1_2) = \alpha \neq 0\). Then, if
\[
f = (\alpha/|\alpha|) \delta_{1_1} + \delta_x,
\]
\(|f| = 1\) and \(|Tf| > 1\), contradicting \(|T| \leq 1\). Hence \((T\delta_x)(1_2) = 0\) for all \(x \in G_1, x \neq 1_1\).

References

University of Illinois, Urbana, Illinois 61801