ON THE EXISTENCE OF $L_{\infty\kappa}$-INDISCERNIBLES

P. C. EKLOF

Abstract. It is proved that if T is a countable theory of $L_{\omega_1\omega}$ with enough axioms for Skolem functions and with arbitrarily large models, then for any order type, there is a model of T with a set of $L_{\infty\kappa}$-indiscernibles of that order type.

In this short note we answer in the affirmative a question of Chang [4] as to whether there exist $L_{\infty\kappa}$-indiscernibles of any given order type. In fact we prove a somewhat stronger result since we show the existence of $L_{\infty\kappa}$-indiscernibles and we use a stronger definition of indiscernibles. Our result also gives a simpler proof of Chang’s theorem on the existence of $L_{\kappa\omega}$-indiscernibles of any well-ordered order type [4, Theorem 4]. (We thank Jon Barwise for some helpful discussions.)

In general we follow the notion of Chang [4] (so κ is always an infinite regular cardinal). Let L be a first order language with countably many relation, function, and constant symbols, and let $\mathfrak{A} = (A, \cdots)$ be a structure for L. An ordered subset X of A is said to be $L_{\lambda\kappa}$-indiscernible if for any subset Y of X of cardinality λ and any order-preserving injection $h: Y \to X$,

$$(\mathfrak{A}, y)_{y \in Y} \equiv_{\lambda} (\mathfrak{A}, hy)_{y \in Y}.$$

If $L_{\infty\kappa}$ is the union of the infinitary languages $L_{\lambda\kappa}$, where λ ranges over all cardinals, we define $L_{\infty\kappa}$-indiscernibles analogously.

Let T be a countable theory of $L_{\omega_1\omega}$. There is a countable fragment \mathcal{L}_A such that $T \subseteq \mathcal{L}_A$ (for the definition of \mathcal{L}_A see Barwise [1]). We consider only T and \mathcal{L}_A such that \mathcal{L}_A has enough function symbols and T includes axioms for all Skolem functions of formulas of \mathcal{L}_A. A necessary condition for T to have models with sets of $L_{\infty\kappa}$-indiscernibles of any order type is that T have models of arbitrarily large cardinality; this is sufficient as well.

Theorem. Let $T \subseteq \mathcal{L}_A$ such that T has arbitrarily large models. If μ is any order type, there is a model \mathfrak{A} of T such that \mathfrak{A} has a set of $L_{\infty\kappa}$-indiscernibles of order type μ.

Proof. We may suppose that the cardinality $|\mu|$ of μ is $\leq \kappa$, since a set of $L_{\infty\lambda}$-indiscernibles is a set of $L_{\infty\kappa}$-indiscernibles if $\lambda \geq \kappa$. Sup-

Received by the editors December 7, 1969.

AMS Subject Classifications. Primary 0235.

Key Words and Phrases. Indiscernibles, infinitary languages, η_{ω}-set.

798
pose \(\kappa = \aleph_\alpha \); it suffices to prove that \(T \) has a model \(\mathfrak{A} \) with a set \(X \) of \(L_\omega \)-indiscernibles of order type \(\eta_\alpha \), since \(\mu \) can be embedded in \(X \) [7, pp. 334–338].

We are assuming that models of \(T \) have Skolem functions for all formulas of \(L_\omega \). Since \(T \) has arbitrarily large models, there is a model \(\mathfrak{A} \) of \(T \) with a set \(X \) of \(\omega \)-indiscernibles of order type \(\eta_\alpha \) (see [6]; if \(L_\omega = L_{\omega_1} \) this is just the classical result of Ehrenfeucht-Mostowski [5]). We may suppose that \(\mathfrak{A} = \mathfrak{S}(X) \), where \(\mathfrak{S}(X) \) is the Skolem hull of \(X \) (i.e. the submodel of \(\mathfrak{A} \) whose universe \(A \) is the closure of \(X \) under the Skolem functions of \(L_\omega \)).

We claim that \(X \) is a set of \(L_\omega \)-indiscernibles in \(\mathfrak{A} \). Let \(Y \subseteq X \) be of cardinality \(\kappa = \aleph_\alpha \) and let \(h : Y \to X \) be an order-preserving injection. Let \(I \) be the set of all isomorphisms

\[f : S \to S' \]

of submodels \(S, S' \) of \(\mathfrak{A} \) such that \(Y \subseteq S, f|_Y = h \), and there exist \(U, U' \subseteq X \) such that \(|U| < \kappa, S = \mathfrak{S}(U), S' = \mathfrak{S}(U') \) and \(f|_U \) is an order-isomorphism of \(U \) onto \(U' \). Notice that \(I \neq \emptyset \) since, letting \(S = \mathfrak{S}(Y), S' = \mathfrak{S}(h(Y)) \), there is an extension of \(h \) to an isomorphism \(f : S \to S' \).

We claim that \(I \) has the following property:

\[(*) \]

For any \(C \subseteq A \) such that \(|C| < \kappa \) and any \(f \in I \), there are \(f', f'' \in I \) such that \(f \subseteq f', f \subseteq f'' \), \(C \subseteq \text{domain of } f' \), and \(C \subseteq \text{range of } f'' \).

It suffices to prove \((*) \), for it follows easily by an induction on formulas of \(L_\omega \) that

\[(\mathfrak{A}, y)_{y \in Y} \equiv_{\omega_\alpha} (\mathfrak{A}, hy)_{y \in Y} \]

(see Calais [2]).

So suppose \(f : S \to S' \) is in \(I \) and \(U, U' \) are as in the definition of \(I \). Given \(C \subseteq A \), \(|C| < \kappa \), there is a \(D \subseteq X \), \(|D| < \kappa \), such that \(C \subseteq \mathfrak{S}(U \cup D) \). It is clear that in order to prove the existence of \(f' \) as required by \((*) \), it suffices to show that we can extend \(f|_U : U \to U' \) to an order-monomorphism: \(U \cup D \to X \). We may assume \(D \cap U = \emptyset \). Define an equivalence relation on \(D \) by: \(x \sim y \) iff \(x \) and \(y \) determine the same cut of \(U \). Write \(D = \bigcup_{y \in \tau} D_x \) as the union of pairwise disjoint equivalence classes \(D_x, \sigma < \tau < \kappa \). For any \(\sigma < \tau \), let \(U = A_x \cup B_x \) where \(A_x < D_x < B_x \). Then \(f(A_x) < f(B_x) \) and \(|f(A_x)| < \kappa, |f(B_x)| < \kappa \). So if

\[E_\sigma = \{ x \in X : f(A_x) < x < f(B_x) \} , \]
E_α is an η_α-set. Therefore there exists an embedding

$$g_\alpha : D_\alpha \to E_\alpha.$$

Define $f' : U \cup D \to X$ by: $f'(x) = f(x)$ if $x \in U$; $f'(x) = g_\alpha(x)$ if $x \in D_\alpha$.

This gives the desired extension of f. In a similar manner we can prove the existence of f'' extending f with $C \subseteq$ range of f''. This completes the proof.

Remarks. (1) If we assume the generalized continuum hypothesis then the proof is much simpler; for then there exists an η_α-set X of cardinality \mathfrak{N}_α. Hence if $h : Y \to X$ is an order-preserving injection and $|Y| < \kappa$, h extends to an isomorphism $h' : X \to X$. It is immediate that

$$(\mathcal{A}, y)_{y \in Y} = \omega_\kappa (\mathcal{A}, hy)_{y \in Y}.$$

(Compare the remark of Chang [3, p. 55].)

(2) Our method suffers from the same defect as that of Chang, namely the indiscernibles do not necessarily generate the model.

(3) If $\kappa = \mathfrak{N}_\alpha$ and $\kappa \geq |\mu|$ the model \mathcal{A} asserted to exist in the statement of the theorem can be chosen to have cardinality $= 2^{\mathfrak{N}_\beta}$ if $\alpha = \beta + 1$; $\sum_{\beta < \alpha} 2^{\mathfrak{N}_\beta}$ if α is a limit ordinal [7].

References

Yale University, New Haven, Connecticut 06520