ON MULTIPLIERS AND ORDER-BOUNDED OPERATORS IN C^*-ALGEBRAS

TAGE BAI ANDERSEN

Abstract. It is shown that the selfadjoint multipliers from a sub-C^*-algebra to the bigger C^*-algebra are exactly the order-bounded operators. As a corollary we get a characterization of the relative commutant of a sub-C^*-algebra with unit.

If A is a C^*-algebra, we shall denote the selfadjoint part of A by A_{a}, the positive part of A by A^{+}, and the unit ball of A by A_{1}. If A and B are C^*-algebras a linear map T from A into B will be called selfadjoint if $T(a^*) = (Ta)^*$ for all a in A.

Definition 1. Let A be a sub-C^*-algebra of the C^*-algebra B. A selfadjoint linear map T from A into B will be called order-bounded if there is a nonnegative real number λ such that

$$-\lambda a \leq Ta \leq \lambda a, \quad \text{all } a \in A^+.$$

Remark 1. If T is order-bounded then T is automatically continuous. In fact, if $a \in A^+$ then $\|Ta\| \leq \lambda \|a\|$. If $a \in A$ then $a = a_1 - a_2 + i(a_3 - a_4)$, where $a_i \in A^+$ and $\|a_i\| \leq \|a\|$ for $i = 1, \ldots, 4$. Then $\|Ta\| \leq 4\lambda \|a\|$.

Definition 2. Let A be a sub-C^*-algebra of the C^*-algebra B. A bounded linear map T from A into B is said to act as a multiplier if

$$T(ab) = (Ta)b = a(Tb), \quad \text{all } a, b \in A.$$

(A multiplier is a double centralizer in the sense of [3].)

Theorem 1. Let A be a sub-C^*-algebra of the C^*-algebra B. Let T be a bounded selfadjoint linear map from A into B. Then the following conditions are equivalent:

(i) T acts as a multiplier.
(ii) T is order-bounded.

Proof. (i) \Rightarrow (ii). Let $x \in A^+_1$, and let $0 < \alpha < 1$. Since T acts as a multiplier: $x^\alpha(Tx^{1-\alpha}) = Tx = (Tx^{1-\alpha})x^\alpha$, and hence x^α and $Tx^{1-\alpha}$ commute. Let f be a positive linear functional on B. Then $(Tx^{1-\alpha})x^\alpha \leq \|Tx^{1-\alpha}\|x^\alpha$ by Gelfand theory and
\[f(Tx) = f((Tx^{1-\alpha})x^\alpha) \leq f(\|Tx^{1-\alpha}\|x^\alpha) \]
\[\leq \|T\|f(x^\alpha) \to \|T\|f(x) \quad \text{for} \quad \alpha \to 1. \]

(Since \(x^\alpha \to x \) in norm by Gelfand theory.) Analogously, \(-\|T\|f(x) \leq f(Tx)\), and since the order of \(B \) is completely determined by the positive linear functionals \([2, 2.6.2]\) we get \(-\|T\|x \leq Tx \leq \|T\|x\) and \(T \) is order-bounded.

(ii)\(\Rightarrow\)(i). By replacing \(T \) by \((2\lambda)^{-1}(\lambda I + T)\) we may assume: \(0 \leq Ta \leq a\), for all \(a \in A^+\).

Let \(\pi \) be any faithful representation of \(B \), e.g. the universal representation of \(B \) \([2, 2.7.6]\). By considering \(\pi(A), \pi(B) \) and \(\pi \circ T \circ \pi^{-1} \) we may assume \(A \) and \(B \) to be concrete \(C^* \)-algebras acting on a Hilbert space \(H \) such that \(B \) is nondegenerate.

We notice that if \(\{a_\gamma\}_{\gamma \in G} \) is a net from \(A_1^+ \) tending weakly to \(0 \) then for all \(\gamma \in G \) and \(\xi \in H \)
\[0 \leq (Ta_\gamma\xi, \xi) \leq (a_\gamma\xi, \xi) \]
and hence \((Ta_\gamma\xi, \xi) \to 0 \). By a result of Kadison \([4, \text{Remark 2.2.3}]\) \(T \) has an extension \(\overline{T} \) to the weak closure \(\overline{A} \) of \(A \) into \(B \) such that \(\overline{T} \) is weakly continuous on the unit ball \(A_1 \) of \(\overline{A} \).

If \(a \in A_1^+ \) there is by Kaplansky's density theorem \([1, \text{Theorem 3, p. 46}]\) a net \(\{a_\gamma\}_{\gamma \in G} \subseteq A_1^+ \) such that \(a_\gamma \to a \) strongly. For each \(\gamma \in G \) and \(\xi \in H \) we get
\[0 \leq (Ta_\gamma\xi, \xi) \leq (a_\gamma\xi, \xi) \]
and since \(\overline{T} \) is weakly continuous on \(\overline{A} \), \(0 \leq (\overline{T}a_\xi, \xi) \leq (a\xi, \xi) \), and \(\overline{T} \) is order-bounded.

Since \(B \) (resp. \(\overline{A} \)) is weakly closed \(\overline{B} \) (resp. \(\overline{A} \)) has a unit \(e_1 \) (resp. \(e_2 \)) \([1, \text{Theorem 2, p. 44}]\).

Since \(B \) is nondegenerate \(e_1 \) is the identity operator on \(H \), while \(e_2 \) is a projection in \(B \), and \(\overline{A} \) is a von Neumann algebra on the Hilbert space \(e_2 H \).

Let \(p \) be a projection in \(\overline{A} \). Then \(0 \leq \overline{T}p \leq p \) and so for all \(\xi \in H \)
\[0 \leq ((\overline{T}p)^{1/2}(e_1 - p)\xi, (\overline{T}p)^{1/2}(e_1 - p)\xi) \]
\[\leq ((\overline{T}p)(e_1 - p)\xi, (e_1 - p)\xi) \]
\[\leq (p(e_1 - p)\xi, (e_1 - p)\xi) = 0. \]

This means that \((\overline{T}p)^{1/2}(e_1 - p) = 0 \) and hence \((\overline{T}p)(e_1 - p) = 0 \) i.e. \(\overline{T}p = (\overline{T}p) \cdot p \).

Since \(\overline{T}p \) is selfadjoint we also get \(\overline{T}p = p(\overline{T}p) \). Now we get
\begin{align*}
(Te_2)p &= (Tp)p + (Te_2 - p)p \\
&= Tp + (Te_2 - p)(e_2 - p)p \\
&= Tp
\end{align*}

and analogously \(p(Te_2) = Tp \).

Since \(T \) is norm-continuous on \(\overline{A} \), and \(Tp = p(Te_2)p = p(Te_2) \) for all projections \(p \) in \(\overline{A} \) it follows from the spectral theorem that

\[Ta = (Te_2)a = a(Te_2), \quad \text{for all } a \in \overline{A}, \]

and hence for all \(a \in \overline{A} \). Especially, \(Te_2 \in \mathcal{A}' \).

Now let \(a, b \in A \). Then

\[T(ab) = T(ab) = (Te_2)(ab) = ((Te_2)(a))b = (Ta)b = (Ta)b \]

and since \(Te_2 \in \mathcal{A}' \) we get analogously \(T(ab) = a(Tb) \), and the theorem is proved.

If \(A \) has a unit we can obtain the following characterization of the relative commutant of \(A \) in \(B \):

Corollary 1. Let \(A \) be a sub-C*-algebra of the C*-algebra \(B \), and assume that \(A \) has a unit \(e \). Let \(T \) be a bounded selfadjoint linear operator from \(A \) into \(B \). Then the following conditions are equivalent:

(i) \(T \) is order-bounded.

(ii) \(T \) is multiplication by a selfadjoint element of \(A' \cap B \) (e.g. \(Te \)).

Proof. (i) \(\Rightarrow \) (ii). By Theorem 1 \(T \) acts as a multiplier. Then for all \(a \in A : Ta = T(\mathbf{e}a) = (Te)a \) and \(Ta = T(\mathbf{e}a) = a(\mathbf{T}e) \). Hence \(Te \in \mathcal{A}' \cap B \), and the result follows.

(ii) \(\Rightarrow \) (i). This follows either directly from Theorem 1 or by the observation that if \(b \) is a selfadjoint element from \(A' \cap B \) and \(a \in A^+ \) then:

\[-\|b\|a \leq ba \leq \|b\|a. \]

If we specialize \(A = B \) we get the following well-known result

Corollary 2. Let \(A \) be a C*-algebra with unit. Let \(T \) be a bounded selfadjoint linear operator in \(A \). Then \(T \) is order-bounded if and only if \(T \) is multiplication by a selfadjoint central element in \(A \).

Corollary 3. Let \(A \) and \(B \) be C*-algebras, \(\Phi \) a *-homomorphism of \(A \) into \(B \), and \(T \) a bounded selfadjoint linear operator from \(A \) into \(B \). If there is a nonnegative real number \(\lambda \) such that

\[-\lambda \Phi(a) \leq Ta \leq \lambda \Phi(a), \quad \text{all } a \in A^+, \]

then
T(ab) = (Ta)Φ(b) = Φ(a)(Tb), \quad \text{all } a, b \in A.

Moreover, if \(A \) has a unit \(e \) then \(Te \in \Phi(A)' \cap B \) and \(Ta = (Te) \Phi(a) \).
Especially, \(T \) is a \(*\)-homomorphism if and only if \(Te \) is a projection in \(B \cap \Phi(A)' \).

Proof. Since the kernel of \(\Phi \) is positively generated \(T \) is 0 on \(\ker(\Phi) \).
Hence the map \(\Psi: \Phi(A) \to B \) is well defined by \(\Psi(\Phi(a)) = Ta, \) all \(a \in A \),
as a linear operator. Since \(T \) is selfadjoint \(\Psi \) is selfadjoint. \(\Phi(A) \) is a sub-\(C^* \)-algebra of \(B \), and since \(\Phi(A^+) = \Phi(A)^+ \), \(\Psi \) is order-bounded.
By Remark 1 \(\Psi \) is continuous. By Theorem 1, \(\Psi \) acts as a multiplier, and hence for all \(a, b \in A \)
\[
T(ab) = \Psi(\Phi(ab)) = \Psi(\Phi(a)\Phi(b)) = \Psi(\Phi(a))\Phi(b) = (Ta)\Phi(b)
\]
and analogously \(T(ab) = \Phi(a)(Tb) \).

Now the second part follows easily from the first part.

Acknowledgements. We want to thank G. Kjærgård Pedersen
and E. Størmer for helpful comments.

References