Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

Approximating residual sets by strongly residual sets


Author: D. A. Moran
Journal: Proc. Amer. Math. Soc. 25 (1970), 752-754
MSC: Primary 54.78
DOI: https://doi.org/10.1090/S0002-9939-1970-0263053-0
MathSciNet review: 0263053
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: Let $ M$ be a closed topological manifold, $ R$ residual in $ M$, and $ N$ any neighborhood of $ R$ in $ M$. The fulfillment by $ R$ of a certain local separation property in $ M$ implies that there exists a topological spine $ R'$ of $ M$ such that $ N \supset R' \supset R$. (Topological spine = strongly residual set.) This local separation property is satisfied whenever $ R$ is an $ \operatorname{ANR} $, or when $ \dim R \leqq \dim M - 2$.


References [Enhancements On Off] (What's this?)

  • [1] M. Brown, ``A mapping theorem for untriangulated manifolds,'' Topology of $ 3$-manifolds and related topics (Proc. Univ. of Georgia Inst., 1961), Prentice-Hall, Englewood Cliffs, N. J. 1962, pp. 92-94. MR 28 #1599. MR 0158374 (28:1599)
  • [2] P. H. Doyle and J. G. Hocking, A decomposition theorem for $ n$-dimensional manifolds, Proc. Amer. Math. Soc. 13 (1962), 469-471. MR 25 #4514. MR 0141101 (25:4514)
  • [3] D. A. Moran, A remark on the Brown-Casler mapping theorem, Proc. Amer. Math. Soc. 18 (1967), 1078. MR 36 #7123. MR 0224076 (36:7123)
  • [4] R. H. Bing, Retractions onto $ \operatorname{ANR} $'s, Proc. Amer. Math. Soc. 21 (1969), 618-620. MR 39 #940. MR 0239583 (39:940)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 54.78

Retrieve articles in all journals with MSC: 54.78


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1970-0263053-0
Keywords: Topological manifold, residual set, strongly residual, topological spine, Brown-Casler map
Article copyright: © Copyright 1970 American Mathematical Society

American Mathematical Society