Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

Concerning product integrals and exponentials


Authors: W. P. Davis and J. A. Chatfield
Journal: Proc. Amer. Math. Soc. 25 (1970), 743-747
MSC: Primary 28.40
DOI: https://doi.org/10.1090/S0002-9939-1970-0267068-8
MathSciNet review: 0267068
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: Suppose $ S$ is a linearly ordered set, $ N$ is the set of real numbers, $ G$ is a function from $ S \times S$ to $ N$, and all integrals are of the subdivision-refinement type. We show that if $ \int_a^b {{G^2} = 0} $ and either integral exists, then the other exists and $ a\prod {^b(1 + G) = \exp \int_a^b G } $. We also show that the bounded variation of $ G$ is neither necessary nor sufficient for $ \int_a^b {{G^2}} $ to be zero.


References [Enhancements On Off] (What's this?)

  • [1] B. W. Helton, Integral equations and product integrals, Pacific J. Math. 16 (1966), 297-322. MR 32 #6167. MR 0188731 (32:6167)
  • [2] J. S. MacNerney, Integral equations and semigroups, Illinois J. Math. 7 (1963), 148-173. MR 26 #1726. MR 0144179 (26:1726)
  • [3] H. S. Wall, Concerning harmonic matrices, Arch. Math. 5 (1954), 160-167. MR 15, 801. MR 0061268 (15:801a)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 28.40

Retrieve articles in all journals with MSC: 28.40


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1970-0267068-8
Keywords: Exponentials, product integrals, subdivision-refinement type integrals, bounded variation
Article copyright: © Copyright 1970 American Mathematical Society

American Mathematical Society