Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

The automorphism group of a finite metacyclic $ p$-group


Author: Richard M. Davitt
Journal: Proc. Amer. Math. Soc. 25 (1970), 876-879
MSC: Primary 20.22
DOI: https://doi.org/10.1090/S0002-9939-1970-0285594-2
MathSciNet review: 0285594
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: In this paper it is shown that if $ G$ is a finite non-Abelian metacyclic $ p$-group, $ p \ne 2$, then the order of $ G$ divides the order of the automorphism group of $ G$.


References [Enhancements On Off] (What's this?)

  • [1] R. Faudree, A note on the automorphism group of a $ p$-group, Proc. Amer. Math. Soc. 19 (1968), 1379-1382. MR 0248224 (40:1476)
  • [2] M. Hall, Jr., The theory of groups, Macmillan, New York, 1959. MR 21 #1996. MR 0103215 (21:1996)
  • [3] P. Hall, A contribution to the theory of groups of prime-power orders, Proc. London Math. Soc. (2) 36 (1933), 29-95.
  • [4] J. C. Howarth, Some automorphisms of finite nilpotent groups, Proc. Glasgow Math. Assoc. 4 (1960), 204-207. MR 22 #9537. MR 0118766 (22:9537)
  • [5] O. J. Huval, A note on the outer automorphisms of finite nilpotent groups, Amer. Math. Monthly 73 (1966), 174-175. MR 1533639
  • [6] A. D. Otto, Central automorphisms of a finite $ p$-group, Trans. Amer. Math. Soc. 125 (1966), 280-287. MR 34 #4362. MR 0204523 (34:4362)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 20.22

Retrieve articles in all journals with MSC: 20.22


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1970-0285594-2
Keywords: Finite $ p$-groups, regular, metacyclic, automorphism group
Article copyright: © Copyright 1970 American Mathematical Society

American Mathematical Society