Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)



A characterization of semilocal inertial coefficient rings

Authors: W. C. Brown and E. C. Ingraham
Journal: Proc. Amer. Math. Soc. 26 (1970), 10-14
MSC: Primary 13.95
MathSciNet review: 0260730
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: A commutative ring $ R$ with identity is called an inertial coefficient ring if every finitely generated $ R$-algebra $ A$ with $ A/N$ separable over $ R$ contains a separable subalgebra $ S$ such that $ S + N = A$, where $ N$ is the Jacobson radical of $ A$. Thus inertial coefficient rings are those commutative rings $ R$ for which a generalization of the Wedderburn Principal Theorem holds for suitable $ R$-algebras. Our purpose is to prove that a commutative ring with only finitely many maximal ideals is an inertial coefficient ring (if and) only if it is a finite direct sum of Hensel rings.

References [Enhancements On Off] (What's this?)

  • [1] M. Auslander and O. Goldman, The Brauer group of a commutative ring, Trans. Amer. Math. Soc. 97 (1960), 367-409. MR 22 #12130. MR 0121392 (22:12130)
  • [2] G. Azumaya, On maximally central algebras, Nagoya Math. J. 2 (1951), 119-150. MR 12, 669. MR 0040287 (12:669g)
  • [3] W. C. Brown, Strong inertial coefficient rings, Michigan Math. J. 17 (1970), 73-84. MR 0263802 (41:8402)
  • [4] N. Bourbaki, Algèbre commutative. Chapitres I, II, Actualités Sci. Indust., no. 1290, Hermann, Paris, 1961. MR 36 #146.
  • [5] E. C. Ingraham, Inertial subalgebras of algebras over commutative rings, Trans. Amer. Math. Soc. 124 (1966), 77-93. MR 34 #209. MR 0200310 (34:209)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 13.95

Retrieve articles in all journals with MSC: 13.95

Additional Information

Keywords: Inertial coefficient ring, Hensel ring, inertial subalgebra, separable algebra, lifting idempotents
Article copyright: © Copyright 1970 American Mathematical Society

American Mathematical Society