Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

On a conjecture of E. Granirer concerning the range of an invariant mean


Author: Ching Chou
Journal: Proc. Amer. Math. Soc. 26 (1970), 105-107
MSC: Primary 20.92
DOI: https://doi.org/10.1090/S0002-9939-1970-0260899-X
MathSciNet review: 0260899
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: The purpose of this paper is to prove the following conjecture of E. Granirer: if $ S$ is an infinite right cancellation left amenable semigroup then for each left invariant mean $ \phi $ of $ S$.


References [Enhancements On Off] (What's this?)

  • [1] C. Chou, On the size of the set of left invariant means on a semigroup, Proc. Amer. Math. Soc. 23 (1969), 199-205. MR 0247444 (40:710)
  • [2] E. Granirer, Extremely amenable semigroups, Math. Scand. 17 (1965), 177-197. MR 33 #5760. MR 0197595 (33:5760)
  • [3] -, On the range of an invariant mean, Trans. Amer. Math. Soc. 125 (1966), 384-394. MR 34 #4390. MR 0204551 (34:4390)
  • [4] J. Lindenstrauss, A short proof of Liapounoff's convexity theorem, J. Math. Mech. 15 (1966), 971-972. MR 34 #7754. MR 0207941 (34:7754)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 20.92

Retrieve articles in all journals with MSC: 20.92


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1970-0260899-X
Keywords: Invariant means, range of a measure, amenable groups, Stone-Čech compactification
Article copyright: © Copyright 1970 American Mathematical Society

American Mathematical Society