Publications Meetings The Profession Membership Programs Math Samplings Policy & Advocacy In the News About the AMS

   
Mobile Device Pairing
Green Open Access
Proceedings of the American Mathematical Society
Proceedings of the American Mathematical Society
ISSN 1088-6826(online) ISSN 0002-9939(print)

 

Strictly convex spaces via semi-inner-product space orthogonality


Author: Ellen Torrance
Journal: Proc. Amer. Math. Soc. 26 (1970), 108-110
MSC: Primary 46.10
MathSciNet review: 0261328
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: Let $ (X,\vert\vert \cdot \vert\vert)$ be a normed space, and let $ [ \cdot , \cdot ]$ be any semi-inner-product on it. We show that $ (X,\vert\vert \cdot \vert\vert)$ is strictly convex if and only if $ \vert\vert y + z\vert\vert > \vert\vert y\vert\vert$ whenever $ [z,y] = 0$ and $ z \ne 0$, and if and only if $ [Ax,x] \ne 0$ whenever $ \vert\vert I + A\vert\vert \leqq 1$ and $ Ax \ne 0$. The condition that $ [z,y] = 0$ can be replaced by a stronger or weaker condition.


References [Enhancements On Off] (What's this?)


Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 46.10

Retrieve articles in all journals with MSC: 46.10


Additional Information

DOI: http://dx.doi.org/10.1090/S0002-9939-1970-0261328-2
PII: S 0002-9939(1970)0261328-2
Keywords: Strictly convex space, semi-inner-product space, orthogonality
Article copyright: © Copyright 1970 American Mathematical Society