DIVISIBLE H-SPACES

ROBERT F. BROWN

Abstract. Let X be an H-space with multiplication m. Define, for $x \in X$, $m_3(x) = m(x, x)$ and $m_k(x) = m(x, m_{k-1}(x))$, for all $k > 2$. If $m_k(x) = y$, then x is called a kth root of y. The H-space (X, m) is divisible if every y in X has a kth root for each $k \geq 2$. We prove that if X is a compact connected topological manifold without boundary, then (X, m) is divisible and, in fact, that every y in X has at least k^β kth roots for each $k \geq 2$, where β is the first Betti number of X.

A group G is divisible if given any $g \in G$ and any integer $k \geq 2$, there is a solution to $x^k = g$ in G. A solution x is called a kth root of g. In 1940, Hopf proved that a compact connected Lie group G is divisible and, moreover, that for each integer $k \geq 2$, every $g \in G$ has either k^λ kth roots or an infinite number, where λ is the number of generators of the exterior algebra $H^\ast(G)$ (rational coefficients) [4].

By an H-space, we mean a triple (X, m, e) where X is a topological space and $m : X \times X \to X$ is a map such that $m(x, e) = m(e, x) = x$ for all $x \in X$. Define $m_k : X \to X$ by setting $m_2(x) = m(x, x)$ and, for each $k > 2$, $m_k(x) = m(x, m_{k-1}(x))$. The H-space (X, m, e) is divisible if m_k is onto for all $k \geq 2$. If $x, y \in X$ and $m_k(x) = y$, then x is a kth root of y. We wish to obtain a result, of the sort Hopf discovered for Lie groups, in the more general setting of H-spaces.

Observe first that we cannot expect to prove that a very large class of H-spaces is divisible. Let I denote the interval $[0, 1]$ and define $m : I \times I \to I$ by $m(s, t) = |s - t|$, then $(I, m, 0)$ is an H-space but $m_2(I) = \{0\}$ so the H-space is not divisible. We will prove, however, that an H-space (X, m, e) is divisible provided that X is a compact connected manifold without boundary. This result includes many spaces not covered by Hopf’s theorem (see, for example, [1] and [5]).

Even when we can show that (X, m, e) is divisible, there is no hope for k^λ as a lower bound on the number of kth roots for each $x \in X$, as the following example demonstrates. Let S^3 denote the 3-sphere.
and let \(H: S^3 \times S^3 \to S^3 \) be quaternion multiplication. Consider \(S^3 \) as the suspension of the 2-sphere, with vertices \(e = (1, 0, 0, 0) \) and \((-1, 0, 0, 0)\). Let \(\Sigma f: S^3 \to S^3 \) be the suspension of a map \(f: S^2 \to S^2 \) of degree 2 then, by the Hopf Homotopy Theorem, there is a homotopy \(h_t: S^3 \to S^3 \) such that \(h_0 = H_2 \) and \(h_1 = \Sigma f \). Since \(S^3 \) is simply-connected, we may assume that \(h_t \) fixes \(e \). Define \(\Delta(S^3) = \{(x, x) | x \in S^3\} \) and \(A = S^3 \times \{e\} \cup \{e\} \times S^3 \cup \Delta(S^3) \subset S^3 \times S^3 \).

A map \(p: S^3 \times S^3 \times \{0\} \to S^3 \) is defined by

\[
p(x, y, t) = H(x, y) \quad \text{if} \quad t = 0, \\
= h_t(x) \quad \text{if} \quad x = y, \\
= x \quad \text{if} \quad y = e, \\
= y \quad \text{if} \quad x = e,
\]

then \(p \) extends to \(P: S^3 \times S^3 \times I \to S^3 \) by the Homotopy Extension Theorem. Define \(m: S^3 \times S^3 \to S^3 \) by \(m(x, y) = P(x, y, 1) \). Then \((S^3, m, e)\) is an \(H \)-space where \(m_2 = \Sigma f \) so the only square root of \(e \) is \(e \) itself even though, in this case, \(k^3 = 2 \). We will prove, however, that if \((X, m, e)\) is an \(H \)-space where \(X \) is a compact connected manifold without boundary, then each \(x \in X \) has at least \(k^3 \) \(k \)th roots, where \(\beta \) denotes the dimension of \(H^1(X) \).

The author wishes to thank George McCarty and John Miller for useful conversations concerning this paper.

The first thing we shall require is the following computation.

Lemma. Let \(A \) be a connected Hopf algebra over \(\Lambda \), a commutative ring with unit, such that \(A \) is isomorphic, as an algebra, to the exterior algebra generated by \(x_1, \cdots, x_\lambda \). Let \(\varphi \) be the product of \(A \) (write \(\varphi(x \otimes y) = xy \)) and \(\psi \) the coproduct. Define \(p_2 = \varphi \psi: A \to A \) and, in general, \(p_k: A \to A \) is defined by \(p_k = \varphi(1 \otimes p_{k-1}) \psi \) for each integer \(k \geq 3 \). Let \(x = x_1 x_2 \cdots x_\lambda \), then, for all \(k \geq 2 \), \(p_k(x) = k^\lambda x \).

Proof. Since \(A = \sum A_p \) is a graded \(\Lambda \)-module, for \(x \in A_p \) we define the degree of \(x \) by \(\deg(x) = p \). Order the generators \(x_1, \cdots, x_\lambda \) so that \(\deg(x_i) \leq \deg(x_{i+1}) \) for all \(i = 1, \cdots, \lambda - 1 \). The algebra \(A \) is generated as a \(\Lambda \)-module by all monomials \(y_j = x_{j(1)} \cdots x_{j(r)} \), where \(1 \leq j(1) < \cdots < j(r) \leq \lambda \). Define the weight \(w(y_j) \) of the monomial \(y_j \) by \(w(y_j) = \deg(x_{j(r)}) \). By definition, \(p_2 = \varphi \psi \) so, for each \(i = 1, \cdots, \lambda \),

\[
p_2(x_i) = \varphi(x_i) = \varphi(x_i \otimes 1 + 1 \otimes x_i + \sum a_j y_j \otimes y_j') = 2x_i + \sum (a_j y_j y_j')
\]
where \(a_j \in \Lambda\), \(w(y_j) < \deg(x_i)\) and \(w(y'_j) < \deg(x_i)\). Since \(\Lambda\) is an exterior algebra, either \(y_j y'_j = 0\), because \(y_j\) and \(y'_j\) have a generator in common, or \(y_j y'_j\) is again a generating monomial (up to sign) and since
\[
w(y_j y'_j) = \max\{w(y_j), w(y'_j)\}
\]
then \(w(y_j y'_j) < \deg(x_i)\). Thus we may write, for \(i = 1, \ldots, \lambda\),
\[
p_i(x_i) = 2x_i + \sum a'_j y'_j
\]
where \(a'_j \in \Lambda\) and \(w(y'_j) < \deg(x_i)\). Suppose that, for \(i = 1, \ldots, \lambda\),
\[
p_{k-1}(x_i) = (k - 1)x_i + \sum a'_j y'_j
\]
where \(a'_j \in \Lambda\) and \(w(y'_j) < \deg(x_i)\), then
\[
p_k(x_i) = \varphi(1 \otimes p_{k-1})y(x_i)
\]
\[
= \varphi(1 \otimes p_{k-1})(x_i \otimes 1 + 1 \otimes x_i + \sum a_j y_j \otimes y'_j)
\]
\[
= x_i + p_{k-1}(x_i) + \sum a_j y_j(p_{k-1}(y'_j))
\]
\[
= kx_i + \sum a'_j y'_j + \sum a_j y_j(p_{k-1}(y'_j)).
\]
Let \(y'_j = x_{j(1)} \cdots x_{j(r)}\), then
\[
p_{k-1}(y'_j) = p_{k-1}(x_{j(1)}) \cdots p_{k-1}(x_{j(r)}).
\]
Of course \(p_{k-1}(x_{j(q)}) \in A_{j(q)}\) so \(p_{k-1}(x_{j(q)})\) is a linear combination of monomials of weight no greater than \(j(q)\), which is less than \(\deg(x_i)\). Therefore \(p_{k-1}(y'_j)\) is a linear combination of monomials of weight less than \(\deg(x_i)\). Since the monomials \(y_j\) are of weight less than \(\deg(x_i)\) and, by the induction hypothesis, the same is true of the \(y'_j\), we have proved, for all integers \(k \geq 2\) and each generator \(x_i\), \(i = 1, \ldots, \lambda\), that
\[
p_k(x_i) = kx_i + \sum a'_j y'_j
\]
where \(a'_j \in \Lambda\) and \(w(y'_j) < \deg(x_i)\). Obviously \(p_k(x_i) = kx_i\) because there are no generators of lower degree. Suppose, for some \(\mu < \lambda\), that
\[
p_k(x_1) \cdots p_k(x_\mu) = k^\mu(x_1 \cdots x_\mu)
\]
then
\[
p_k(x_1) \cdots p_k(x_{\mu+1}) = k^\mu(x_1 \cdots x_\mu) p_k(x_{\mu+1})
\]
\[
= k^{\mu+1}(x_1 \cdots x_{\mu+1}) + k^\mu(x_1 \cdots x_\mu) \sum a_j y_j'('
\]
\[
= k^{\mu+1}(x_1 \cdots x_{\mu+1}) + k^\mu \sum a'_j (x_1 \cdots x_\mu) y'_j.
\]
But \(w(y''_j) < \deg(x_{\mu+1})\) so \(y''_j = x_{j(1)} \cdots x_{j(r)}\) where \(j(q) \leq \mu\) for all \(q = 1, \ldots, r\) because of the order imposed on the \(x_i\). Therefore, since
A is an exterior algebra, \((x_1 \cdots x_\mu) y'_1 = 0\) and we have
\[
p_k(x_1) \cdots p_k(x_{\mu+1}) = k^\mu + 1(x_1 \cdots x_{\mu+1}).
\]
Thus, in a finite number of steps, we obtain
\[
p_k(\bar{x}) = p_k(x_1) \cdots p_k(x_n) = k^\lambda (x_1 \cdots x_\lambda) = k^\lambda \bar{x}.
\]
By an \(H\)-manifold, we shall mean an \(H\)-space \((M, m, e)\) where \(M\) is a compact connected manifold without boundary.

Let \((M, m, e)\) be an \(H\)-manifold and let \(x_1, \cdots, x_\lambda\) generate \(H^*(M)\), then since \(M\) is orientable [3], \(\bar{x} = x_1x_2 \cdots x_\lambda \in H^n(M)\), where \(n\) is the dimension of \(M\). Define \(\Delta : M \to M \times M\) to be the diagonal map. Then \(H^*(M)\) is a connected Hopf algebra over the rationals with product \(\Delta^*\) and coproduct \(m^*\). Observe that we defined \(m_2 = m\Delta\) and the maps \(m_k\) for \(k > 2\) so that the diagram
\[
\begin{array}{ccc}
M & \xrightarrow{m_k} & M \\
\Delta \downarrow & & \downarrow m \\
M \times M & \xrightarrow{1 \times m_{k-1}} & M \times M
\end{array}
\]
commutes. Therefore, by the lemma,
\[
m_k^*(\bar{x}) = p_k(\bar{x}) = k^\lambda \bar{x} \neq 0,
\]
for all \(k \geq 2\).

By [2], since \(m_k^*: H^n(M) \to H^n(M)\) is not the zero homomorphism then, for each \(x \in M\), there is a lower bound for the number of \(k\)th roots of \(x\), namely, the order of the cokernel of the induced homomorphism
\[
m_k^*: \pi_1(M, e) \to \pi_1(M, e).
\]
It is well known that \(m_k^*(\alpha) = k\alpha\) for all \(\alpha \in \pi_1(M, e)\).

By the Fundamental Theorem of Abelian Groups, we write
\[
\pi_1(M, e) \cong Z^{(1)} \oplus \cdots \oplus Z^{(\beta)} \oplus T = F \oplus T
\]
where each \(Z^{(i)}\) is infinite cyclic and \(T\) is finite. By the Hurewicz Isomorphism Theorem and the Universal Coefficient Theorem, \(\beta\) is the dimension of \(H^1(M)\). Let \(m_k^*\) denote the restriction of \(m_k^*\) to \(F\), then the cokernel of \(m_k^*\) is \(Z_k^{(1)} \oplus \cdots \oplus Z_k^{(\beta)}\) where \(Z_k^{(i)}\) is a cyclic group of order \(k\). Therefore, the cokernel of \(m_k^*\) has order \(k^\beta\) and since the order of the cokernel of \(m_k^*\) is at least as large, we have proved
Theorem. Every H-manifold (M, m, e) is divisible. Moreover, each $x \in M$ has at least k^β kth roots for all integers $k \geq 2$, where β denotes the dimension of $H^1(M)$.

References