Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

On the free product of two groups with an amalgamated subgroup of finite index in each factor


Authors: A. Karrass and D. Solitar
Journal: Proc. Amer. Math. Soc. 26 (1970), 28-32
MSC: Primary 20.52
DOI: https://doi.org/10.1090/S0002-9939-1970-0263928-2
MathSciNet review: 0263928
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Let $ G = (A \ast B;U)$ where $ U$ is finitely generated and of finite index $ \ne 1$ in both $ A$ and $ B$. We prove that $ G$ is a finite extension of a free group iff $ A$ and $ B$ are both finite. In particular, this answers in the negative a question of W. Magnus as to whether or not $ G$ can be free. Analogous results are obtained for tree products and HNN groups.


References [Enhancements On Off] (What's this?)

  • [1] G. Baumslag, On the residual finiteness of generalized free products of nilpotent groups, Trans. Amer. Math. Soc. 106 (1963), 193-209. MR 26 #2489. MR 0144949 (26:2489)
  • [2] R. D. Carmichael, An introduction to the theory of groups of finite order, Ginn, Boston, Mass., 1937; reprint Dover, New York, 1956. MR 17, 823. MR 0075938 (17:823a)
  • [3] M. Hall Jr., Coset representations in free groups, Trans. Amer. Math. Soc. 67 (1949), 421-432. MR 11, 322. MR 0032642 (11:322e)
  • [4] G. Higman, B. H. Neumann and H. Neumann, Embedding theorems for groups, J. London Math. Soc. 24 (1949), 247-254. MR 11, 322. MR 0032641 (11:322d)
  • [5] A. Karrass and D. Solitar, On finitely generated subgroups of a free group, Proc. Amer. Math. Soc. 22 (1969), 209-213. MR 0245655 (39:6961)
  • [6] -, The subgroups of a free product of two groups with an amalgamated subgroup, Trans. Amer. Math. Soc. 150 (1970), 227-255. MR 0260879 (41:5499)
  • [7] B. H. Neumann, An essay on free products of groups with amalgamations, Philos. Trans. Roy. Soc. London Ser. A246 (1954), 503-554. MR 16, 10. MR 0062741 (16:10d)
  • [8] H. Neumann, (a) Generalized free products with amalgamated subgroups. I, Amer. J. Math. 70 (1948), 590-625. MR 10, 233. (b) II, Amer. J. Math. 71 (1949), 491-540. MR 11, 8. MR 0026997 (10:233a)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 20.52

Retrieve articles in all journals with MSC: 20.52


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1970-0263928-2
Keywords: Amalgamated products, generalized free products, tree products, HNN groups, finite extensions of free groups, free subgroups of finite index, free groups
Article copyright: © Copyright 1970 American Mathematical Society

American Mathematical Society