Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

Finite operators


Author: J. P. Williams
Journal: Proc. Amer. Math. Soc. 26 (1970), 129-136
MSC: Primary 47.40
DOI: https://doi.org/10.1090/S0002-9939-1970-0264445-6
MathSciNet review: 0264445
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: A bounded linear operator $ A$ on a Hilbert space $ H$ is called finite if $ \vert\vert AX - XA - 1\vert\vert \geqq 1$ for each $ X \in B(H)$. The class of finite operators is uniformly closed, contains every normal operator, every operator with a compact direct summand, and the entire $ {C^ \ast }$-algebra generated by each of its members. These results imply that the set of operators with a finite dimensional reducing subspace is not uniformly dense. It is also shown that the set of self-commutators is uniformly closed.


References [Enhancements On Off] (What's this?)

  • [1] A. Brown and C. Pearcy, Structure of commutators of operators, Ann. of Math. (2) 82 (1965), 112-127. MR 31 #2612. MR 0178354 (31:2612)
  • [2] P. R. Halmos, Commutators of operators. II, Amer. J. Math. 76 (1954), 191-198 MR 15, 538. MR 0059484 (15:538d)
  • [3] -Irreducible operators, Michigan Math. J. 15 (1968), 215-223. MR 37 #6788. MR 0231233 (37:6788)
  • [4] C. R. Putnam, On commutators of bounded matrices, Amer. J. Math. 73 (1951), 127-131. MR 12, 836. MR 0041357 (12:836d)
  • [5] H. Radjavi, Structure of $ {A^ \ast }A - A{A^ \ast }$, J. Math. Mech. 16 (1966), 19-26. MR 34 #3332. MR 0203482 (34:3332)
  • [6] J. G. Stampfli, The norm of a derivation, Pacific J. Math (to appear). MR 0265952 (42:861)
  • [7] -, On hyponormal and Toeplitz operators, Math. Ann. 183 (1969), 328-336. MR 0251571 (40:4798)
  • [8] J. G. Stampfli and J. P. Williams, Growth conditions and the numerical range in a Banach algebra, Tôhoku Math. J. 20 (1968), 417-424. MR 0243352 (39:4674)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 47.40

Retrieve articles in all journals with MSC: 47.40


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1970-0264445-6
Keywords: Commutators, reducible operators, numerical range, $ {C^ \ast }$-algebras
Article copyright: © Copyright 1970 American Mathematical Society

American Mathematical Society