TREE-LIKE CONTINUA AND CELLULARITY

R. RICHARD SUMMERHILL

Abstract. In this paper the equivalence of tree-like and cellular is proved for 1-dimensional continua in E^n. More precisely, if X is a tree-like continuum, then the collection of all embeddings $h: X \to E^n$, $n \geq 3$, such that $h[X]$ is cellular in E^n is a dense G_δ-subset of the collection of all maps from X into E^n. Conversely, if X is a 1-dimensional cellular subset of E^n, then X is a tree-like continuum.

1. Terminology. Throughout this paper a continuum will be a nondegenerate compact connected metric space and a covering will be a finite open covering. The symbol \sim should be translated "homotopic to." If X is a continuum and $\mathcal{O} = \{O_1, \ldots, O_m\}$ is a covering of X, the mesh of \mathcal{O}, denoted $\text{mesh } \mathcal{O}$, is the maximum of the diameters of the elements of \mathcal{O}. The nerve of \mathcal{O}, denoted $\mathcal{N}(\mathcal{O})$, is the abstract complex consisting of those simplexes $(O_{i_1} \cdots O_{i_j})$ such that $O_{i_1} \cap \cdots \cap O_{i_j} \neq \emptyset$. A continuum X is tree-like if for each $\varepsilon > 0$ there exists a covering \mathcal{O} of X such that mesh $\mathcal{O} < \varepsilon$ and $\mathcal{N}(\mathcal{O})$ is a contractible 1-complex.

Let X be a subset of a topological space Y and let n be a nonnegative integer. The statement that X has property n-UV means that for each open set U containing X, there is an open set V containing X and contained in U such that each singular n-sphere in V is homotopic to 0 in U. X has property UV^n if it has property i-UV for each $i \leq n$ and X has property UV^∞ if it has property i-UV for each nonnegative integer i. X has property UV^∞ if for each open set U containing X, there is an open set V containing X and contained in U such that V is contractible in U. For a good discussion of the UV properties the reader is referred to Armentrout [1].

A subset X of E^n is said to be cellular in E^n if there is a sequence C_1, C_2, \cdots of n-cells in E^n such that

1. for each positive integer i, $C_{i+1} \subset \text{Int } C_i$, and
2. $\bigcap_{i=1}^\infty C_i = X$.

This paper is devoted to studying the relationship between tree-like, the UV-properties, and cellularity in Euclidean space. In §2 we show that for 1-dimensional continua they are essentially the same and in §3 we prove an embedding theorem for tree-like continua.

Received by the editors December 8, 1969.

AMS 1970 subject classifications. Primary 5450; Secondary 5420, 5425.

Key words and phrases. Cellularity, continua, dimension, tree-like, UV-properties.
2. An equivalence theorem. In this section we shall show that a 1-dimensional continuum X is tree-like if and only if the image of each embedding of X into E^n has property UV^∞. This is equivalent to the statement that there is an embedding h of X into some Euclidean space such that $h[X]$ is cellular.

Lemma 1. Let X be a continuum in E^n, $n \geq 3$. If X is 1-dimensional, then X has property i-UV for $i = 0, 2, 3, \ldots$. If X is tree-like, then X has property UV^∞.

Proof. Let U and W be open subsets of E^n such that \overline{W} is compact and $X \subset W \subset \overline{W} \subset U$. There is a positive real number ϵ such that if A is any subset of U which meets \overline{W} and has diameter less than ϵ, then the convex hull of A is contained in U.

Let $\mathcal{O} = \{O_1, \ldots, O_m\}$ be a covering of X by open sets contained in W such that mesh $\mathcal{O} < \epsilon/3$ and $\mathfrak{N}(\mathcal{O})$ is a 1-complex. If X is tree-like then \mathcal{O} may be chosen so that $\mathfrak{N}(\mathcal{O})$ is contractible. For each $i = 1, \ldots, m$, let p_i be a point of O_i such that the set $\{p_1, \ldots, p_m\}$ is in general position in E^n. Since $n \geq 3$, the collection L consisting of vertices p_1, \ldots, p_m and 1-simplexes (p_ip_j) such that $O_i \cap O_j \neq \emptyset$ is a subcomplex of E^n. The choice of ϵ implies that L is contained in U. Moreover, L is the image under a simplicial embedding of $\mathfrak{N}(\mathcal{O})$ into E^n and therefore is contractible if X is tree-like.

Let $V = \bigcup_{i=1}^m O_i$. Using the methods employed in [4, p. 69], there is a mapping f from V onto L such that $O_i = f^{-1}[s^0 p_i]$ (here $s^0 p_i$ denotes the open star of p_i in L). Note that f moves no point x in V more than ϵ, for if $x \in O_i$, then $d(x, f(x)) \leq d(x, p_i) + d(p_i, f(x)) < \epsilon/3 + 2\epsilon/3 = \epsilon$.

Now let S denote the standard k-dimensional sphere for some nonnegative integer k and let $g : S \to V$ be a map. Then fg maps S into $L \subset U$ and $d(g(y), fg(y)) < \epsilon$ for each $y \in S$. Thus fg and g are homotopic in E^n by a homotopy which moves $fg(y)$ to $g(y)$ along a straight line segment of length less than ϵ. In particular, the choice of ϵ implies that fg and g are homotopic in U. But $fg[S]$ is contained in L and therefore, if $k \neq 1$, $fg \sim 0$ in $L \subset U$. If X is tree-like, then $fg \sim 0$ in $L \subset U$ for all nonnegative integers k. Thus $g \sim fg \sim 0$ in U for the desired cases.

The next lemma is proved by Case and Chamberlin in [2].

Lemma 2. A 1-dimensional continuum is tree-like if and only if each continuous map of X into any linear graph is homotopic to 0.

Lemma 3. If X is a 1-dimensional continuum in E^n having property UV^∞, then X is tree-like.
Proof. Let \(g: X \to K \) be a map from \(X \) into a linear graph \(K \). Since \(g \) is homotopic to a map from \(X \) onto a subcomplex of \(K \), there is no loss of generality in assuming that \(g \) is onto. Let \(p_1, \ldots, p_m \) be the vertices of \(K \) and for each \(i = 1, \ldots, m \), let \(O_i = g^{-1}[s^0 \cup p_i] \). Then \(\emptyset = \{ O_i \} \) is a covering of \(X \) and \(\mathcal{H}(\emptyset) \) is a 1-complex simplicially isomorphic to \(K \). Let \(U_1, \ldots, U_m \) be open subsets of \(E^n \) such that \(U_i \cap X = O_i \) for \(i = 1, \ldots, m \) and such that if \(\mathcal{U} = \{ U_i \} \), then \(\mathcal{H}(\mathcal{U}) \) is simplicially isomorphic to \(\mathcal{H}(\emptyset) \). Let \(U = \bigcup_{i=1}^m U_i \) and let \(f: U \to K \) be a map such that \(f^{-1}[s^0 \cup p_i] = U_i \) for \(i = 1, \ldots, m \). Note that for each \(x \in X \), \(f(x) \) and \(g(x) \) lie in the same simplex of \(K \) and therefore \(g \sim f \mid X \) in \(K \). We show \(f \mid X \) is homotopic to \(0 \) in \(K \).

Now \(X \) has property \(UV^\infty \) in \(E^n \) and \(U \) is an open set containing \(X \), so there is a homotopy \(H': X \times [0, 1] \to U \) such that \(H'(x, 0) = x \) and \(H'(x, 1) = x_0 \) for some point \(x_0 \in U \). Define \(H: X \times [0, 1] \to K \) by \(H = f \circ H' \). Then \(H(x, 0) = f(x) \) and \(H(x, 1) = f(x_0) \).

Theorem 1. If \(X \) is a 1-dimensional continuum, then the following are equivalent:

1. \(X \) is tree-like,
2. the image of each embedding of \(X \) into \(E^n \) has property \(1-UV \),
3. the image of each embedding of \(X \) into \(E^n \) has property \(UV^\infty \), and
4. \(X \) can be embedded as a cellular subset of some Euclidean space.

Proof. If \(n \geq 3 \), then the implications (1) \(\Rightarrow \) (2) \(\Rightarrow \) (3) follow directly from Lemma 1. If \(n < 3 \), then Lemma 5.1 of \([1]\) applies.

If \(h: X \to E^n \) is an embedding such that \(h[X] \) has property \(UV^\infty \), then McMillan \([5]\) has shown that \(h[X] \) is cellular in \(E^{n+1} \). Thus (3) and (4) are equivalent (observing Lemma 5.1 of \([1]\) again). The proof is then completed by applying Lemma 3.

The previous theorem and the results of \([2]\) provide an interesting example concerning the \(UV \)-properties. Case and Chamberlin construct an example of a subset \(X \) of \(E^3 \) which is not tree-like, but which has trivial Čech groups.

Corollary 1. There is a 1-dimensional continuum \(X \) in \(E^3 \) which has trivial Čech homology groups, cohomology groups, and fundamental group, but not having property \(UV^\infty \) in \(E^3 \).

2. Embeddings of tree-like continua in \(E^n \). Throughout this section let \(X \) be a fixed tree-like continuum. Let \(F[X] \) denote the collection of all mappings from \(X \) into \(E^n \) with the compact open topology. Recall that \(F[X] \) is a complete metric space (cf. \([4]\)) with the usual sup metric.

Consider the following subsets of \(F[X] \):
\[I[X] = \{ f \in F[X] | f \text{ is an embedding} \}, \]
\[F_c[X] = \{ f \in F[X] | f[X] \text{ is cellular in } E^n \}, \]
\[I_c[X] = F_c[X] \cap I[X]. \]

In this section we prove that if \(n \geq 3 \), then \(I_c[X] \) is a dense \(G_\delta \)-subset of \(F[X] \). Note that if \(n < 3 \), then \(I_c[X] = I[X] \). We assume therefore that \(n \) is a fixed integer \(\geq 3 \).

If \(\epsilon \) is a positive real number, an \(\epsilon \)-mapping \(f : X \rightarrow E^n \) is an element of \(F[X] \) such that for each \(y \in f[X] \), the set \(f^{-1}(y) \) has diameter less than \(\epsilon \). For each \(i = 1, 2, \ldots \), let \(G_i \) be the subset of \(F[X] \) consisting of all \(1/i \)-mappings. The following result is proved in [4].

Lemma 4. For each positive integer \(i \), \(G_i \) is a dense open subset of \(F[X] \). Moreover, \(I[X] = \cap_{i=1}^{\infty} G_i \) is a dense \(G_\delta \)-subset of \(F[X] \).

For each \(i = 1, 2, \ldots \), let \(C_i \) be the collection of all elements \(f \) of \(F[X] \) such that there is an \(n \)-cell \(C \) in \(E^n \) with \(f[X] \subset \text{Int} \ C \subset N(f[X], 1/i) \). (Here, the set \(N(f[X], 1/i) \) denotes the \(1/i \)-neighborhood of \(f[X] \) in \(E^n \).) Clearly \(F_i[X] = \cap_{i=1}^{\infty} C_i \). The following two lemmas show that each \(C_i \) is a dense open subset of \(F[X] \).

Lemma 5. \(F_c[X] \) is dense in \(F[X] \).

Proof. Let \(g \) be an element of \(F[X] \) and let \(\epsilon \) be a positive real number. Lemma 4 implies that \(X \) can be considered a subset of \(E^n \) such that \(g \) moves no point more than \(\epsilon/2 \). Corresponding to \(\epsilon/2 \), let \(f \) and \(L \) be as in the proof of Lemma 1; that is, \(f \) maps \(X \) onto the contractible 1-complex \(L \) in \(E^n \) without moving points more than \(\epsilon/2 \). Then \(f \) and \(g \) are within \(\epsilon \) of each other and, since \(L \) is collapsible, \(f[X] \) is cellular in \(E^n \).

Lemma 6. For each positive integer \(i \), \(C_i \) is an open subset of \(F[X] \).

Proof. Suppose \(f \in C_i \) and let \(C \) be an \(n \)-cell in \(E^n \) such that \(f[X] \subset \text{Int} \ C \subset N(f[X], 1/i) \). Let
\[\epsilon = \min \{ d(f[X], E^n - \text{Int} \ C), d(C, E^n - N(f[X], 1/i)) \}. \]

Since \(\epsilon < 1/i \), any \(\epsilon/2 \)-approximation \(g \) to \(f \) will have the property that \(g[X] \subset \text{Int} \ C \subset N(g[X], 1/i) \).

Theorem 2. If \(n \geq 3 \), \(I_c[X] \) is a dense \(G_\delta \)-subset of \(F[X] \).

Proof. The previous lemmas imply that for each \(i = 1, 2, \ldots \), both \(G_i \) and \(C_i \) are dense and open in \(F[X] \). Thus \(G_i \cap C_i \) is dense and open. By Theorem 2–79 of [3], the set \(\cap_{i=1}^{\infty} (G_i \cap C_i) = I[X] \cap F_c[X] = I_c[X] \) is a dense \(G_\delta \)-subset of \(F[X] \).
The following corollary is now obvious.

Corollary 2. Let X be a 1-dimension continuum in E^n having property UV^∞ and let ϵ be a positive real number. Then there is an embedding $h : X \to E^n$ such that $d(x, h(x)) < \epsilon$ for each $x \in X$ and such that $h[X]$ is cellular in E^n.

References

University of Missouri at Columbia, Columbia, Missouri 65201