Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

Countable connected spaces


Author: Gary Glenn Miller
Journal: Proc. Amer. Math. Soc. 26 (1970), 355-360
MSC: Primary 54.20
DOI: https://doi.org/10.1090/S0002-9939-1970-0263005-0
MathSciNet review: 0263005
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Two pathological countable topological spaces are constructed. Each is quasimetrizable and has a simple explicit quasimetric. One is a locally connected Hausdorff space and is an extension of the rationals. The other is a connected space which becomes totally disconnected upon the removal of a single point. This space satisfies the Urysohn separation property--a property between $ {T_2}$ and $ {T_3}$--and is an extension of the space of rational points in the plane. Both are one dimensional in the Menger-Urysohn [inductive] sense and infinite dimensional in the Lebesgue [covering] sense.


References [Enhancements On Off] (What's this?)

  • [1] R. H. Bing, A connected countable Hausdorff space, Proc. Amer. Math. Soc. 4 (1953), 474. MR 15, 729. MR 0060806 (15:729f)
  • [2] M. Brown, A countable connected Hausdorff space, Bull. Amer. Math. Soc. 59 (1953), 367. Abstract #423.
  • [3] P. Erdös, Some remarks on connected sets, Bull. Amer. Math. Soc. 50 (1944), 442-446. MR 6, 43. MR 0010603 (6:43a)
  • [4] P. Fletcher, H. Hoyle and C. Patty, The comparison of topologies, Duke Math. J. 36 (1969), 325-331. MR 39 #3441. MR 0242107 (39:3441)
  • [5] S. P. Franklin and G. V. Krishnarao, A topological characterization of the real line, Notices Amer. Math. Soc. 16 (1969), 694. Abstract #69T-G78.
  • [6] S. W. Golomb, A connected topology for the integers, Amer. Math. Monthly 66 (1959), 663-665. MR 21 #6347. MR 0107622 (21:6347)
  • [7] E. Hewitt, On two problems of Urysohn, Ann. of Math. (2) 47 (1946), 503-509. MR 8, 165. MR 0017527 (8:165g)
  • [8] A. M. Kirch, A countable, connected, locally connected Hausdorff space, Amer. Math. Monthly 76 (1969), 169-171. MR 39 #920. MR 0239563 (39:920)
  • [9] B. Knaster and C. Kuratowski, Sur les ensembles connexes, Fund. Math. 2 (1921), 206-255.
  • [10] J. Martin, A countable Hausdorff space with a dispersion point, Duke Math. J. 33 (1966), 165-167. MR 33 #699. MR 0192474 (33:699)
  • [11] G. Miller, A countable Urysohn space with an explosion point, Notices Amer. Math. Soc. 13 (1966), 589. Abstract #636-48.
  • [12] -, A countable locally connected quasimetric space, Notices Amer. Math. Soc. 14(1967), 720. Abstract #67T-541.
  • [13] G. Miller and B. J. Pearson, On the connectification of a space by a countable point set, J. Austral. Math. Soc. (to appear). MR 0292039 (45:1127)
  • [14] L. J. Norman, A sufficient condition for quasimetrizability of a topological space, Portugal. Math. 26 (1967), 207-211. MR 0248740 (40:1991)
  • [15] P. Roy, A countable connected Urysohn space with a dispersion point, Duke Math. J. 33 (1966), 331-333. MR 33 #4887. MR 0196701 (33:4887)
  • [16] R. A. Stoltenberg, On quasi-metric spaces, Duke Math. J. 36 (1969), 65-71. MR 38 #3824. MR 0235515 (38:3824)
  • [17] A. H. Stone, A countable, connected, locally connected Hausdorff space, Notices Amer. Math. Soc. 16 (1969), 422. Abstract #69T-D10.
  • [18] P. Urysohn, Über die Mächtigkeit der Zusammenhängen Mengen, Math. Ann. 94 (1925), 262-295. MR 1512258
  • [19] R. L. Wilder, A point set which has no true quasi-component, and which becomes connected upon the addition of a single point, Bull. Amer. Math. Soc. 33 (1927), 423-427. MR 1561394

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 54.20

Retrieve articles in all journals with MSC: 54.20


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1970-0263005-0
Keywords: Countable connected Hausdorff space, dispersion point, locally connected space, Urysohn space, quasimetric, Menger-Urysohn dimension, Lebesgue dimension, completion of the rationals
Article copyright: © Copyright 1970 American Mathematical Society

American Mathematical Society