An embedding theorem for homeomorphisms of the closed disc

Author:
Gary D. Jones

Journal:
Proc. Amer. Math. Soc. **26** (1970), 352-354

MSC:
Primary 54.82

DOI:
https://doi.org/10.1090/S0002-9939-1970-0263059-1

MathSciNet review:
0263059

Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: If is an orientation preserving self-homeomorphism of the closed disc with the property that if , where the set of fixed points is finite and contained in , then there exists an arc joining and such that tends to a fixed point as , then it is shown that can be embedded in a continuous flow on .

**[1]**S. A. Andrea,*On homeomorphisms of the plane which have no fixed points*, Abh. Math. Sem. Univ. Hamburg**30**(1967), 61-74. MR**34**#8397. MR**0208588 (34:8397)****[2]**N. J. Fine and G. E. Schweigert,*On the group of homeomorphisms of an arc*, Ann. of Math. (2)**62**(1955), 237-253. MR**17**, 288. MR**0072460 (17:288b)****[3]**N. E. Foland,*An embedding theorem for discrete flows on a closed -cell*, Duke Math. J.**33**(1966), 441-444. MR**33**#6609. MR**0198451 (33:6609)****[4]**-,*An embedding theorem for contracting homeomorphisms*, Math. Systems Theory**3**(1969), 166-169. MR**0248795 (40:2045)****[5]**N. E. Foland and W. R. Utz,*The embedding of discrete flows in continuous flows*, Proc. Internat. Sympos. Ergodic Theory (Tulane Univ., New Orleans, La., 1961), Academic Press, New York, 1963, pp. 121-134. MR**28**#3412. MR**0160198 (28:3412)****[6]**M. K. Fort, Jr.,*The embedding of homeomorphisms inflows*, Proc. Amer. Math. Soc.**6**(1955), 960-967. MR**18**, 326. MR**0080911 (18:326b)****[7]**W. H. Gottschalk,*Minimal sets: an introduction to topological dynamics*, Bull. Amer. Math. Soc.**64**(1958), 336-351. MR**20**#6484. MR**0100048 (20:6484)****[8]**W. H. Gottschalk and G. A. Hedlund,*Topological dynamics*, Amer. Math. Soc. Colloq. Publ., vol. 36, Amer. Math. Soc., Providence, R. I., 1955. MR**17**, 650. MR**0074810 (17:650e)****[9]**G. D. Jones,*The embedding of flows inflows*, Ph.D. Thesis, Univ. of Missouri, Columbia, 1969.**[10]**W. R. Utz,*The embedding of a linear discrete flow in a continuous flow*, Colloq. Math.**15**(1966), 263-270. MR**34**#2000. MR**0202126 (34:2000)**

Retrieve articles in *Proceedings of the American Mathematical Society*
with MSC:
54.82

Retrieve articles in all journals with MSC: 54.82

Additional Information

DOI:
https://doi.org/10.1090/S0002-9939-1970-0263059-1

Keywords:
Embedding,
discrete flows,
continuous flows,
homeomorphisms,
closed disc

Article copyright:
© Copyright 1970
American Mathematical Society