Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

Oscillatory properties of linear third-order differential equations.


Author: W. J. Kim
Journal: Proc. Amer. Math. Soc. 26 (1970), 286-293
MSC: Primary 34.42
DOI: https://doi.org/10.1090/S0002-9939-1970-0264162-2
MathSciNet review: 0264162
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: Separation theorems, distribution of zeros of solutions, and disconjugacy criteria for linear third-order differential equations are discussed. For instance, it is proved that the equation $ y''' + py'' + qy' + ry = 0$, where $ p \in C'',q \in C'$, and $ r \in C$ on an interval $ I$, is disconjugate on $ I$ if $ p$ does not change sign and if $ q \leqq 0,r \geqq 0,q - 2p' \leqq 0$, and $ r - q' + p'' \leqq 0$ on $ I$.


References [Enhancements On Off] (What's this?)

  • [1] N. V. Azbelev and Z. B. Caljuk, On the question of distribution of zeros of solutions of linear differential equations of third order, Mat. Sb. 51 (93) (1960), 475-486; English transl., Amer. Math. Soc. Transl. (2) 42 (1964), 233-245. MR 22 #12266. MR 0121529 (22:12266)
  • [2] J. H. Barrett, Third-order differential equations with nonnegative coefficients, J. Math. Anal. Appl. 24 (1968), 212-224. MR 38 #365. MR 0232039 (38:365)
  • [3] -, Oscillation theory of ordinary differential equations, Advances in Math. 3 (1969), 415-509. MR 0257462 (41:2113)
  • [4] M. Hanan, Oscillation criteria for third-order differential equations, Pacific J. Math. 11 (1961), 919-944. MR 26 #2695. MR 0145160 (26:2695)
  • [5] W. J. Kim, Disconjugacy and disfocality of differential systems, J. Math. Anal. Appl. 26 (1969), 9-19. MR 38 #4759. MR 0236464 (38:4759)
  • [6] A. C. Lazer, The behavior of solutions of the differential equation $ y''' + p(x)y' + q(x)y = 0$, Pacific J. Math. 17 (1966), 435-466. MR 33 #1552. MR 0193332 (33:1552)
  • [7] J. Mikusiński, Sur l' équation $ {x^{(n)}} + A(t)x = 0$, Ann. Polon. Math. 1 (1955), 207-221. MR 19, 141. MR 0086201 (19:141g)
  • [8] G. Pólya, On the mean-value theorem corresponding to a given linear homogeneous differential equations, Trans. Amer. Math. Soc. 24 (1922), 312-324. MR 1501228

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 34.42

Retrieve articles in all journals with MSC: 34.42


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1970-0264162-2
Keywords: Zeros of solutions, separation, distribution of zeros, sufficient conditions for disconjugacy, linear equations, ordinary, third-order, real-valued coefficients
Article copyright: © Copyright 1970 American Mathematical Society

American Mathematical Society