Oscillatory properties of linear third-order differential equations.

Author:
W. J. Kim

Journal:
Proc. Amer. Math. Soc. **26** (1970), 286-293

MSC:
Primary 34.42

MathSciNet review:
0264162

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: Separation theorems, distribution of zeros of solutions, and disconjugacy criteria for linear third-order differential equations are discussed. For instance, it is proved that the equation , where , and on an interval , is disconjugate on if does not change sign and if , and on .

**[1]**N. V. Azbelev and Z. B. Calyuk,*On the question of the distribution of the zeros of solutions of a third-order linear differential equation*, Mat. Sb. (N.S.)**51 (93)**(1960), 475–486 (Russian). MR**0121529****[2]**John H. Barrett,*Third-order differential equations with nonnegative coefficients*, J. Math. Anal. Appl.**24**(1968), 212–224. MR**0232039****[3]**John H. Barrett,*Oscillation theory of ordinary linear differential equations*, Advances in Math.**3**(1969), 415–509. MR**0257462****[4]**Maurice Hanan,*Oscillation criteria for third-order linear differential equations.*, Pacific J. Math.**11**(1961), 919–944. MR**0145160****[5]**W. J. Kim,*Disconjugacy and disfocality of differential systems*, J. Math. Anal. Appl.**26**(1969), 9–19. MR**0236464****[6]**A. C. Lazer,*The behavior of solutions of the differential equation 𝑦”’+𝑝(𝑥)𝑦′+𝑞(𝑥)𝑦=0*, Pacific J. Math.**17**(1966), 435–466. MR**0193332****[7]**J. Mikusiński,*Sur l’équation 𝑥⁽ⁿ⁾+𝐴(𝑡)𝑥=0*, Ann. Polon. Math.**1**(1955), 207–221 (French). MR**0086201****[8]**G. Pólya,*On the mean-value theorem corresponding to a given linear homogeneous differential equation*, Trans. Amer. Math. Soc.**24**(1922), no. 4, 312–324. MR**1501228**, 10.1090/S0002-9947-1922-1501228-5

Retrieve articles in *Proceedings of the American Mathematical Society*
with MSC:
34.42

Retrieve articles in all journals with MSC: 34.42

Additional Information

DOI:
https://doi.org/10.1090/S0002-9939-1970-0264162-2

Keywords:
Zeros of solutions,
separation,
distribution of zeros,
sufficient conditions for disconjugacy,
linear equations,
ordinary,
third-order,
real-valued coefficients

Article copyright:
© Copyright 1970
American Mathematical Society