ON ELEMENTARY GROUPS

ERNEST L. STITZINGER

Abstract. Bechtell has defined a group G to be elementary if the Frattini subgroup of each subgroup of G is the identity. In this note we prove the following: If the derived group of G is nilpotent, then necessary and sufficient conditions that G be elementary are that the Frattini subgroup of some Carter subgroup K of G be equal to the derived group of K.

Bechtell in [1] has defined a group G to be elementary if the Frattini subgroup of each subgroup H of G, Fr(H), is the identity. In this note we find that if G^1 is nilpotent then necessary and sufficient conditions that G be elementary are that Fr(G) = 1 and Fr(K) = K^1 for some (hence all) Carter subgroup K of G. Only finite solvable groups are considered here and the notation is as in [4].

Lemma 1. Let A be an invariant subgroup of G and B be a subgroup of G such that $A \subseteq B$ and B/A is a Carter subgroup of G/A. Let H be a Carter subgroup of B. Then H is a Carter subgroup of G.

Proof. H is nilpotent. Let $x \in N_G(H)$. Then $xA \in N_{G/A}(HA/A)$. By a remark in [2], HA/A is a Carter subgroup of B/A and B/A is nilpotent. Hence HA = B and $xA \in N_{G/A}(B/A)$. Therefore $x \in B$ and hence $x \in N_B(H) = H$.

Lemma 2. Let G^1 be complemented in G by a subgroup K such that G^1 and K are abelian and $G^1 \cap Z(G) = 1$. Then Carter subgroups of G are precisely those subgroups of G which are complements to G^1.

Proof. K is nilpotent. If $N_G(K)$ contains K properly then there exists $x \in N_G(K) \cap G^1$, $x \neq 1$. Then for all $k \in K$, $xkx^{-1} \in K$ which yields $xkx^{-1}k^{-1} \in K \cap G^1 = 1$. Therefore $x \in C_G(K)$ and, since G^1 is abelian, $x \in Z(G)$, whence $x = 1$, a contradiction. Therefore $N_G(K) = K$ and K is a Carter subgroup of G. If J is another Carter subgroup of G, then K and J are conjugate, hence J also complements G^1.

Corollary. Let G^1 be nilpotent and Fr(G) = 1. Then Carter subgroups of G are precisely those subgroups of G which complement G^1.

Proof. By Satz 12 in [3], Fit$(G) = \text{Soc}(G)$, hence G^1 is abelian. By

Received by the editors February 5, 1970.

AMS 1969 subject classifications. Primary 2040, 2025.

Key words and phrases. Elementary group, Carter subgroup, Frattini subgroup.
Satz 7 in [3], there exists a complement K to G^1 in G. Since $[K, K] \subseteq K \cap G^1 = 1$, K is abelian. Furthermore $Z(G) \cap G^1 \subseteq \text{Fr}(G) = 1$. Hence G satisfies the hypothesis of Lemma 2.

Lemma 3. Let G^1 be nilpotent. Then the following are equivalent:

1. $\text{Fr}(G) = 1$.
2. $\text{Fit}(G) = \text{Soc}(G)$ and $\text{Fit}(G)$ is complemented by a subgroup and $\text{Fr}(G) \subseteq G^1$.
3. G^1 is abelian, is completely reducible under inner automorphisms of G, is complemented by a subgroup and $\text{Fr}(G) \subseteq G^1$.

Proof. That (1) implies (2) is well known even if G^1 is not nilpotent.

Assume (2) holds and proceed by induction on the order of G. Since $G^1 \subseteq \text{Fit}(G) = \text{Soc}(G)$, G^1 is abelian. If every minimal invariant subgroup of G is contained in G^1, then $G^1 = \text{Soc}(G)$ and (3) follows. Therefore let A be a minimal invariant subgroup of G such that $A \not\subseteq G^1$. Hence $A \not\subseteq \text{Fr}(G)$ and A is complemented by a maximal subgroup, say K. Since $[G, A] \subseteq G^1 \cap A = 1$, A is central in G, hence G is the direct product of A and K. K inherits the conditions (2), hence K satisfies (3) by induction. It now follows that G also satisfies (3).

Assume (3) holds. Then G^1 is the direct product of minimal invariant subgroups of G which we denote by A_1, \ldots, A_s and G is the semidirect product of G^1 and a subgroup, say K. Now $K = KA_1 \cdots A_i \cdots A_s$ is a maximal subgroup of G since if M is a maximal subgroup of G properly containing K_i, then $M \cap A_i \neq 1$ and $M \cap A_i$ is invariant in G, hence equals A_i. This implies that $M = G$, a contradiction. Therefore $\text{Fr}(G) \subseteq K$ and $\text{Fr}(G) \subseteq K \cap G^1 = 1$. Hence (1) holds.

Lemma 4. Let $G^1 \subseteq \text{Soc}(G)$, A be an invariant subgroup of G contained in G^1 and $Z(G) \cap G^1 = 1$. Then $Z(G/A) \cap G^1/A$ is the identity of G/A.

Proof. G^1 is the direct product of A and an invariant subgroup of G, say B. Let $xA \in Z(G/A) \cap G^1/A$. Since $xA \in Z(G/A)$, $xg^{-1}a^{-1}g \in A$ for all $g \in G$. Since $x \in G^1/A$, $x = ab$ where $a \in A$ and $b \in B$. Then $a^{-1}g^{-1}ba^{-1}g^{-1} = abgb^{-1}a^{-1}g^{-1} = a = c$ where $c = ga^{-1}g^{-1} \in A$. Hence $bgb^{-1}a^{-1}g^{-1} \in A \cap B = 1$ for all $g \in G$ and therefore $b \in Z(G) \cap G^1 = 1$. Consequently $x \in A$ and $Z(G/A) \cap G^1/A$ is the identity of A.

Theorem. Let G be a group such that G^1 is nilpotent. Then G is elementary if and only if $\text{Fr}(G) = 1$ and $\text{Fr}(K) = K^1$ for some Carter subgroup K of G.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use
Proof. If G is elementary, then $\text{Fr}(G) = 1$. Let K be a Carter subgroup of G. Then K complements G^1, hence K is abelian. Therefore $K^1 = 1 = \text{Fr}(K)$.

Conversely, in order to show a contradiction, let G be a group of minimal order such that G^1 is nilpotent, $\text{Fr}(G) = 1$, $\text{Fr}(K) = K^1$ for some Carter subgroup K of G and G is not elementary. Then $\text{Fr}(J) = J^1$ for every Carter subgroup J of G. Let M be a subgroup of G. If $M \supseteq G^1$, then M is invariant in G and $\text{Fr}(M) \subseteq \text{Fr}(G) = 1$. Assume that $G^1 \not\subseteq M$ and that $M G^1 \subseteq G$. Since $G^1 \subseteq M G^1$, $\text{Fr}(M G^1) = 1$ and $G / M G^1$ is abelian, hence $G / M G^1$ is its own Carter subgroup. Then, if H is a Carter subgroup of $M G^1$, H is also a Carter subgroup of G by Lemma 1, hence by assumption $\text{Fr}(H) = H^1$. By the minimality of G, $M G^1$ is elementary, hence $\text{Fr}(M) = 1$.

Suppose now that $M G^1 = G$. Since G^1 is abelian, $G^1 \cap M$ is an invariant subgroup in G and $M / (G^1 \cap M)$ complements $G^1 / (G^1 \cap M) = (G^1 / (G^1 \cap M))^1$ in $G / (G^1 \cap M)$. Since $\text{Fr}(G) = 1$, $G^1 \cap Z(G) = 1$ and, by Lemma 3, $G^1 \subseteq \text{Soc}(G)$. Therefore, by Lemma 4, $(G / (G^1 \cap M))^1 \cap Z(\text{Fr}(G) / (G^1 \cap M))$ is the identity of $G / (G^1 \cap M)$. Hence $M / (G^1 \cap M)$ is a Carter subgroup of $G / (G^1 \cap M)$ by Lemma 2. Let K be a Carter subgroup of M. By Lemma 1, K is a Carter subgroup of G. Hence K is a complement to G^1 and $K (G^1 \cap M) = M$ since $K \subseteq M$. Therefore, K is a complement to $G^1 \cap M$ in M. $G^1 \cap M$ is completely reducible under the inner automorphisms of M and $M^1 \subseteq G^1 \cap M$, hence M^1 is completely reducible under the inner automorphisms of M. Let J be a complement to M^1 in $G^1 \cap M$ which is invariant under the inner automorphisms of M. Then $J \subseteq Z(M) \cap G^1$, hence $G^1 \cap M = M^1 J \subseteq M^1 (G^1 \cap Z(M)) \subseteq G^1 \cap M$. Therefore $G^1 \cap M = M^1 (G^1 \cap Z(M))$. But $Z(M) \subseteq N_M(K) = K$, hence $G^1 \cap Z(M) \subseteq G^1 \cap K = 1$ and $G^1 \cap M = M^1$. Furthermore, $\text{Fr}(K) = K^1$ as a Carter subgroup of G. Now M satisfies part (3) of Lemma 3, hence $\text{Fr}(M) = 1$. Consequently, $\text{Fr}(M) = 1$ for every subgroup M of G and G is elementary, a contradiction. This completes the proof.

References

North Carolina State University, Raleigh, North Carolina 27607