Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

Bounded in the mean solutions of $ \triangle u=Pu$ on Riemannian manifolds


Authors: Kwang-nan Chow and Moses Glasner
Journal: Proc. Amer. Math. Soc. 26 (1970), 261-265
MSC: Primary 53.72; Secondary 30.00
DOI: https://doi.org/10.1090/S0002-9939-1970-0271871-8
MathSciNet review: 0271871
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: Let $ \Phi $ be a convex positive increasing function and $ d = {\lim _{t \to \infty }}\Phi (t)/t$. A harmonic function $ u$ on a Riemann surface $ R$ is called $ \Phi $-bounded if $ \Phi (\vert u\vert)$ is majorized by a harmonic function on R. M. Parreau has shown that if $ d < \infty $ ( $ d = \infty $, resp.), then every positive (bounded, resp.) harmonic function on $ R$ reduces to a constant if and only if every $ \Phi $-bounded harmonic function does. In this paper analogues of these results are given for the equation $ \Delta u = Pu(P \geqq 0)$ on a Riemannian manifold.


References [Enhancements On Off] (What's this?)

  • [1] L. Ahlfors and L. Sario, Riemann surfaces, Princeton Math. Series, no. 26, Princeton Univ. Press, Princeton, N. J., 1960. MR 22 #5729. MR 0114911 (22:5729)
  • [2] P. A. Loeb and B. Walsh, A maximal regular boundary for solutions of elliptic differential equations, Ann. Inst. Fourier Grenoble 18 (1968), 283-308. MR 39 6048. MR 0243099 (39:4423)
  • [3] L. Myrberg, Über die Integration der Differentialgleichung $ \Delta u = c(P)u$ auf offenen Riemannschen Flächen, Math. Scand. 2 (1954), 142-152. MR 16, 33. MR 0062878 (16:33f)
  • [4] L. Naim, $ {\mathcal{H}^p}$ spaces of harmonic functions, Ann. Inst. Fourier Grenoble 17 (1967), 425-469. MR 0226052 (37:1642)
  • [5] M. Nakai, $ \Phi $-bounded harmonic functions and classification of Riemann surfaces, Pacific J. Math. 15 (1965), 1329-1335. MR 33 #270. MR 0192043 (33:270)
  • [6] M. Parreau, Sur les moyennes des fonctions harmoniques et analytiques et la classification des surfaces de Riemann, Ann. Inst. Fourier Grenoble 3 (1952), 103-197. MR 14, 263. MR 0050023 (14:263c)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 53.72, 30.00

Retrieve articles in all journals with MSC: 53.72, 30.00


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1970-0271871-8
Keywords: Riemannian manifold, Riemann surface, harmonic space, harmonic function, solution of $ \Delta u = Pu$, bounded in the mean, Dirichlet problem, $ Q$-compactification, relatively hyperbolic, Harnack principle
Article copyright: © Copyright 1970 American Mathematical Society

American Mathematical Society